Linear Excavation Echine Corner (covered by long section G) (Scenario 1) Use section

ote. Sociey hoad properies ap

$\begin{array}{lll}\text { Linear Excavation } & \text { Springfield (north)(covered by long section } L \text {) (Scenario 1) Use section } M\end{array}$

$Q=$ flow rai										
$\mathrm{K}=$ hydraulic conductivity$\mathrm{D}=$ auvier thickess		Use depth of base of sandstone (+ small section of dolerite - group together)						Width of excavation $(m)=45$Length of exavation $(m)=190$		
Ro=radius of influence								Length of excavation $(m)=190$Chainage $4060-4250 \mathrm{~m}$ (ending		
$\mathrm{r}_{0}=$ effective radius		52.2 Calculated (X section of base of excavation typically 45m)						Assume same depth throughout		
$\mathrm{H}_{0}=$ eses water level		Elevation of properties above aquifer base (11), or top of aquifer (4) (no reliable w.l.s tor this section so use height of houses as worst case scenario)								
$\mathrm{h}_{\mathrm{w}}=$ dynamic water level $\quad 0 \mathrm{~m}$ as base of cutting coincides with quuiter base										
Calculation of required flow (Thiem), Calculation of radius of influence (Sichard)										
$\begin{array}{\|c\|} \hline \text { Hydraulic } \\ \text { Conductivity }(\mathrm{m} / \mathrm{s}) \end{array}$	$\begin{aligned} & \text { Aquiter }, \\ & \text { Thickness }(m) \end{aligned}$	$\mathrm{H}_{0}(\mathrm{~m})$	$h_{w}(\mathrm{~m})$	Calculated Radius of Influence Ro (m)	$\begin{aligned} & \text { Effective Radius } \\ & r_{0}(m) \end{aligned}$	$\underset{\substack{\text { Ro }+ \text { re } \\(\mathrm{m})}}{ }$	$\begin{gathered} \text { Calculated Flow Q } \\ \left(\mathrm{m}^{3} \mathrm{~s}\right) \end{gathered}$	$\begin{aligned} & \text { Flow Q } \mathrm{Cl} \\ & \left(\mathrm{~m}^{2} \mathrm{l}\right. \end{aligned}$	$\begin{gathered} \text { Flow }{ }_{(1 / \mathrm{s})} \end{gathered}$	
2.50E-05	4	11	0	110.00	69.8	179.8	0.01005	869	0.05	
$2.50 \mathrm{E}-05$	4	4	0	40.00	69.8	109.8	0.00278	240	2.78	dolerite
$7.34 E-07$	4	11	0	18.85	69.8	88.6	0.00117	101	1.17	
7.34E-07	4	4	0	6.85	69.8	76.6	0.00039	34	0.39	range

$\frac{\text { Linear Excavation }}{\text { Where, }}$ Springfield (north)(covered by long section L) (Scenario 2) Use section
$\mathrm{Q}=$ Ilow rate

Note: Society Road properies approx. 20 mAOD so far below the bese the cuting

Predicted Inflows					
Cutting Section					
	Chainage	Length of section	Min estimted inflow ($\mathrm{m}^{3} / \mathrm{day}$)	Max. estimated inflow using max K derived from falling head test values ($\mathrm{m}^{3} / \mathrm{day}$)	Max estimated inflow using sandstone K derived from pumping test analysis (m3/day)
Ecline	3250-3720m	470	23	577 or 1792 (the latter figure if mudstone K of $4 \times 10^{-5} \mathrm{~m} / \mathrm{s}$ used)	182 or 1792 (if mudstone K of $4 \times 10^{-5} \mathrm{~m} / \mathrm{s}$ used)
Springfield (south)	3720-4060m	340	1	362	111
Springfield (north)	4060-4250m	190	10	869	869 * (dolerite higher K value)
Total Inflow			34	1808 or 3023	1162 or 2772

Predicted radius of influence and drawdown
Minimum distance from centre of cutting to receptor $(\mathrm{m}), \mathrm{r}_{\mathrm{i}}$ Max estimated R_{0} +re Drawdown at radius $\mathrm{r}_{\mathrm{i}}(\mathrm{m})$
Ecline

Notes

$\overline{\mathrm{R}_{0}=\text { calculated radius }}$ of influence
$R_{e}=$ effective radius of excavation
$r_{i}=$ minimum distance from the centre of the cutting to the receptor

