CSRO10 – CONSTANT RATE PUMPING TEST

TABLE OF CONTENTS

1. Intr	oduction	1
1.1	Background	1
1.2	Borehole details	1
2. Pun	nping Test	3
2.1	Programme of work	3
2.2	Test Design	3
2.3	Test Set-up	3
2.4	Monitoring Schedule and Water Level Datum	1
2.5	Test Results	5
3. Ana	Ilysis of the Results	3
3.1	Preamble	3
3.2	CSRO10 Constant Rate Test, CSRO12 (Observation borehole 1)	3
3.3	CSRO10 Constant rate Test, CSRO11 (Observation borehole 2)10)
3.4	CSRO12 Recovery	3
3.5	CSRO11 Recovery14	1
3.6	CSRO10 Recovery	5
3.7	Summary of estimated aquifer properties17	7
3.8	Discussion of Results17	7
4. Con	clusions19	7
5. Refe	erences)

LIST OF FIGURES

Figure 2.1 – Manual dip and discharge data
Figure 2.2 – Observation borehole data
Figure 3.2 – CSRO12 Hantush (1960) analysis
Figure 3.3 – CSRO12 Neuman (1972) analysis10
Figure 3.4 - CSRO11 Time - Drawdown11
Figure 3.5 – CSRO11 Hantush (1960) analysis12
Figure 3.6 - CSRO11 Neuman (1972) analysis12
Figure 3.7 – CSRO12 Recovery Test Data13
Figure 3.9 – CSRO11 Recovery Test Data14
Figure 3.10 – CSRO11 Theis (1935) Recovery Analysis15
Figure 3.11 - CSRO10 Recovery Test Data16

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

Figure 3.12 - CSRO10 Theis (1935) Recovery Analysis	16
---	----

LIST OF TABLES

Table 1.1 – Borehole Construction Details	1
Table 2.1 – Instrumentation and Measuring Equipment	4
Table 2.3 – Reference point levels	5
Table 3.1 – Summary of estimated aquifer properties 1	17

ANNEXES

ANNEX A1 – BOREHOLE LOGS ANNEX A2 - TEST DATA (MANUAL OBSERVATIONS)

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

1. INTRODUCTION

1.1 Background

Section 3.2 of the main report discusses methods to estimate the radius or zone of interest of a dewatering abstraction and the uncertainties associated with applying the more commonly used approaches to assess the impact of dewatering the Queensferry cutting and South Launch excavation. The uncertainties arise either because there is insufficient information to define some parameters or because there is some doubt as to the applicability of empirical equations. Some equations are simply not applicable, for example because they apply only to radial flow to a circular excavation and/or because they apply only to confined aquifers (groundwater level monitoring indicates that the principal aquifer units in this case are generally semi-confined or unconfined).

Therefore, FCBC undertook a constant rate pumping test (CRT) in the sandstone unit close to Echline Corner in May 2012, with a view of applying the results to the Thiem-Depuit equation (see Section 3.2 of main report). Analysis of the test data would also allow a bulk transmissivity value to be determined and from this an estimated bulk permeability value. In view of the anisotropy of the sandstone unit at Echline (presence of mudstone layers, anisotropy of fractures and therefore flow paths etc), this is likely to be a truer reflection of the permeability of the unit than the values estimated from falling head tests (Section 2.3 of main report).

1.2 Borehole details

A new borehole, CSRO10, was drilled for the purpose of the pumping test. To ensure that a response could be monitored within the same aquifer unit, two observation boreholes: - CSRO11 and CSRO12, were drilled nearby. Borehole details are provided in Table 1.2 below.

	CSRO10 (pump test borehole)	CSRO11	CSRO12
Construction date	12/03/2012	26/03/2012	27/03/2012
Location (NGR)	311427.4 677750.1	311432.1 677749.0	311426.0 677752.4
Ground level (mAOD)	55.727	55.607	55.827
Total depth (mBGL)	15	15	15
Top and bottom of monitored aquifer unit (mBGL)	Sandstone (with thin beds of mudstone) 0.5 – 13.0	Sandstone (with thin beds of mudstone) 0.5 – 14.0	Sandstone (with thin beds of mudstone) 0.6 – 14.8
Monitored interval (mBGL)	2.0 – 13.0	1.5 – 14.0	1.5 – 14.0
Rest water level (mBGL)	2.60	2.02	2.62

Table 1.1 – Borehole Construction Details

Full borehole logs are attached Annex 1. The sandstone under test is overlain by 0.5 – 0.6m of sandy gravelly clay at the abstraction location. Mudstone is found beneath the sandstone.

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

The drift cover above the sandstone varies in lithology and thickness away from the abstraction borehole. Approximately 60m south south-east of CSRO10, the lithological sequence is very similar (at CSRO03A), yet 40m to the south east of CSRO10, the sandstone is overlain by around 2m of sand (at BHS101). Approximately 60m to the north of the abstraction borehole at S80, the sandstone is found at 4.8 mBGL, overlain by 1m of mudstone and 3.8m of clay. Approximately 40 m to the north-west at S78, the sandstone is overlain by 1m of sand, gravel and gravelly clay. In summary, the borehole logs around the area of the test borehole show that the aquifer and overlying geology are similar but not vertically and laterally homogeneous.

No other abstraction was occurring in the area before or at the time of the pumping test.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

FRC-P-____E-099-R-NT-EAR-06001-04

GRONTMIJ

2. PUMPING TEST

2.1 Programme of work

The pumping test was preceded by a review of groundwater level data, borehole logs from the test area and permeability test results (falling head tests), which are presented in the main report.

CSRO10, CSRO11 and CSRO12 were developed by airlift and purging in March 2012 to remove accumulated sediment and to improve performance/reduce turbulent head loss.

The test programme was as follows:

- 28th and 29th May 2012 Pre-test set up
- 30th May 2012
- CSRO10 constant rate pump test CSRO10 recovery test
- 30th 31st May 2012

2.2 Test Design

The previous review of permeability data and aquifer geometry indicated that a pumping rate of around 1 I/s was likely to be the maximum sustainable rate. The test was designed so that the abstraction borehole would be pumped at a constant rate for at least 8 hours, or until a quasi-steady state condition (no significant increase in drawdown) had been achieved.

FCBC's specialist subcontract, WJ Groundwater Ltd, supplied the pumping test equipment including the pump, temporary pipework, electromagnetic flow meter and data logger for the abstraction borehole.

2.3 Test Set-up

A temporary soakaway pit was excavated approximately 250m to the west of CSRO10 for test discharge. This was considered to be sufficiently far away so as to prevent recirculation of groundwater.

The pump was installed as deep as possibly in the borehole. A dip tube was installed alongside the pump in CSRO10 to prevent the monitoring equipment and the pump becoming tangled. On completion of pump installation, pre-test pumping was carried out to check achievable pumping rates. It became apparent that a pumping rate of 1 I/s would not be sustainable. Water levels in the abstraction borehole dropped rapidly and the pump was turned off for 45 minutes so that water levels could recover. The borehole was subsequently tested at lower pumping rates and a rate of approximately 0.13 I/s was selected as the maximum probable sustainable rate.

Water level monitoring instruments (data loggers) were installed in each of the boreholes and three additional boreholes in the surrounding area. Details of the measuring equipment are provided in Table 2.1.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

Instrument	Measurement	Further Details	Borehole
Water Level Logger	Borehole water	10 mH ₂ 0 range,	CSRO11, CSRO12,
(Schlumberger Water	level (automatic)	accuracy= 0.005m	CSR003A
Services – Diver)			
Water Level Logger	Borehole water	50 mH ₂ 0 range,	S80 (piezometer)
(Schlumberger Water	level (automatic)	accuracy = 0.001m	
Services – Diver)			
Water Level Logger	Borehole water	9 mH ₂ 0 range	S78 (standpipe)
(RuggedTroll)	level (automatic)		
Barometric Pressure	Barometric	150 cmH ₂ 0 range,	CSRO12
Logger (Schlumberger	Pressure at the	accuracy = 0.5 cmH_20	
Water Services Baro-	test site		
Diver)	(automatic)		
Vibrating Wire	Borehole water	35 mH ₂ 0 range,	CSRO10
Transducer	level (automatic)	accuracy = 3.5cm	
Electric tape dipmeter	Borehole water		CSRO10, CSRO11,
	level (manual)		CSRO12
50mm electromagnetic	Discharge rate		CSRO10 (abstraction
flowmeter	(I/s)		borehole)

Table 2.1 – Instrumentation and Measuring Equipment

A weir tank was requested by DJV for manual discharge measurements. WJ Groundwater Ltd did not provide this on the day but instead installed an in-line mechanical flow meter. Readings from this appeared inaccurate so were disregarded.

After test set-up, water levels were left to recover overnight.

2.4 Monitoring Schedule and Water Level Datum

Electronic water level monitoring commenced at CSRO10, 11 and 12, 25 days prior to the test date and continued until after the test was complete. Electronic water level monitoring was also carried out at S78, S80 and CSRO03A one day prior to the test, continuing until after the test was complete.

During the test, manual water level and flow measurements were scheduled as given in Table 2.2 below.

Monitoring of the test borehole (CSRO10) was undertaken by WJ Groundwater (manual water level dip readings, data logger, and flow recordings). Monitoring of the observation boreholes was undertaken by the DJV.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

Table 2.2 – Schedule of water level and discharge measurements

	0 to 10 minutes	30 second intervals	
	10 to 20 minutes	1 minute intervals	
Manual water level and flow	20 to 40 minutes	2 minute intervals	
meter readings	40 to 60 minutes	5 minute intervals	
	60 to 120 minutes	10 minute intervals	
	120 to 180 minutes	20 minute intervals	
	180 minutes to end of test	1 hour intervals	
Electronic Water Level	1 minute intervals throughout t	he test	

Manual water level measurements were made to the top of the borehole casings (dip datum). These had been surveyed prior to the test. Elevation details are provided in Table 2.3 below.

Table 2.3 – Reference point levels

Borehole (BH)	Dip datum	Dip datum elevation (mAOD)
CSRO10	Top of BH casing	56.207
CSRO11	Top of BH casing	55.915
CSRO12	Top of BH casing	56.073

2.5 Test Results

The constant rate test at CSRO10 was carried out on the 30th May 2012 as planned, and recovery of water levels was also monitored over the 30th and 31st May. Figure 2.1 provides a graphical representation of the manual water level and discharge data collected during the test. The water levels have been corrected to mAOD based on the information in Table 2.3 above.

Manual dip and flow data is provided in Annex A2. Logger data is supplied electronically separately from this document.

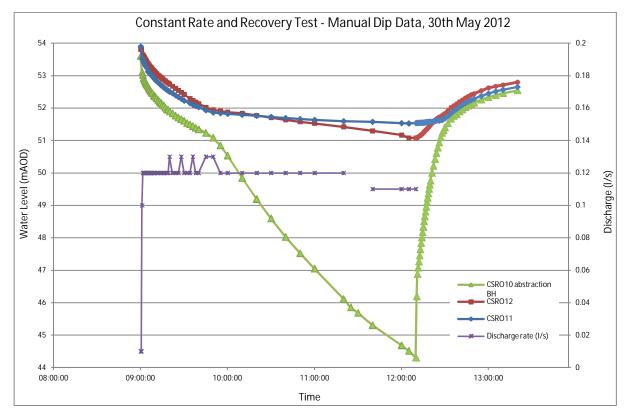
The test was started at 09:00:00 but the desired pumping rate was not achieved until 1 minute 30 seconds into the test. There were very small fluctuations in pumping rate (0.01 I/s), but overall the target rate of 0.12 I/s was maintained.

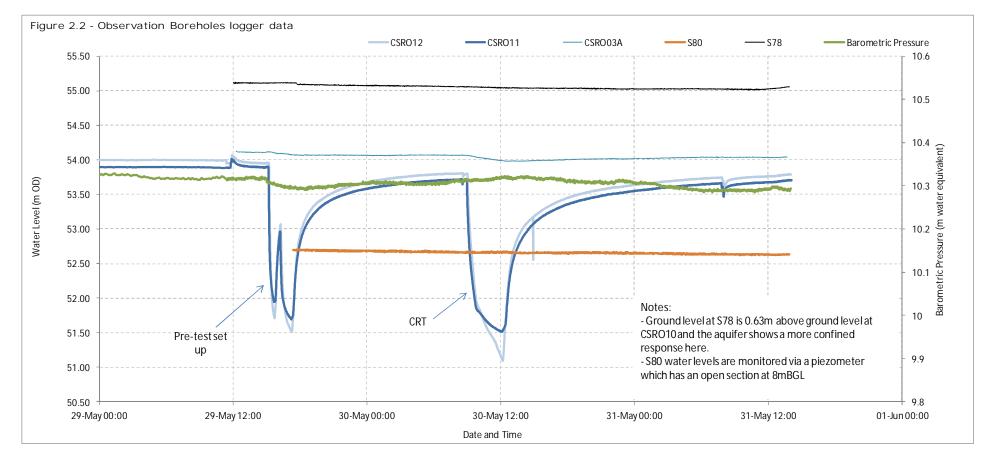
At around 45 minutes into the test, there was a marked increase in rate of drawdown. This meant that the test had to be terminated after 3 hours 10 minutes as the water level in the abstraction borehole approached the pump intake depth. Recovery was manually monitored for 70 minutes after the pump was turned off. Data loggers were left to monitor the recovery overnight.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

Figure 2.1 – Manual dip and discharge data




Figure 2.2 shows logger data converted to mAOD for the monitoring boreholes (including extra boreholes not included in the main analysis). The data shows a response at CSRO03A and a gradual decrease in water level at S78, though it is not certain if this is attributable to the pumping test. No response is seen in S80, though water levels in the borehole are measured through a piezometer installed around 8mBGL, as opposed to a standpipe with an open section spanning the sandstone unit.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

Appendix C - CSRO10 Pumping Test FINAL Forth Replacement crossing

Figure 2.2 – Observation borehole data

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

RAMBØLL Leonhardt, Andrä und Partner

7

GRONTMIJ

Appendix C

3. ANALYSIS OF THE RESULTS

3.1 Preamble

Water levels in the abstraction and observation boreholes failed to approach a quasi-steady state condition during the CRT; indeed the drawdown rate in the production borehole increased markedly 45 minutes into the test. This could be because of a number of reasons but one of the most likely is because water levels have dropped below a more permeable layer within the sandstone unit. This is discussed further in Section 3.8.

Despite this, the test duration was sufficient to allow analysis of the results, although the latertime aquifer responses were not obviously apparent.

Only a thin layer of clay overlies the sandstone at the location of CSRO10 and the rest water level in the sandstone is below the top of the aquifer unit. This means that the aquifer is unconfined and as such the Neuman (1972) curve fitting method of analysis for unsteady state flow is considered suitable.

However, as shown in Section 1.2 the drift cover is laterally and vertically heterogeneous and over the test area there is some clay, and some sand and gravel cover. The Hantush (1960) curve fitting method for a leaky confined aquifer may therefore be more appropriate. The assumptions behind both methods are described in Kruseman and de Ridder (1994).

The data from both CSRO12 (observation borehole 1) and CSRO11 (observation borehole 2) have been analysed using the commonly-used AquiferWin32 software, in which the time drawdown data are used to calculate transmissivity (T) and the aquifer storage coefficient (S).

Transmissivity is the product of the average hydraulic conductivity (K) and the saturated thickness of the aquifer (d). From this, the average hydraulic conductivity has been calculated, using an aquifer thickness of 13.4m (from borehole logs). A summary of the results is given in Section 3.4.

3.2 CSRO10 Constant Rate Test, CSRO12 (Observation borehole 1)

Water levels at CSRO12 showed a clear response to abstraction from CSRO10, with a maximum drawdown of 2.73m. The time-drawdown graph (Figure 3.1) shows the logger data from this borehole over the period of the CRT.

There is a clear reduction in the rate of drawdown at around 50 minutes before the drawdown rate increases again. This coincides with the increase in the rate of drawdown seen in the abstraction borehole.

The Hantush (leaky confined) analysis is shown in Figure 3.2. The Neuman (unconfined) analysis is shown in Figure 3.3.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

Figure 3.1 – CSRO12 Time-Drawdown

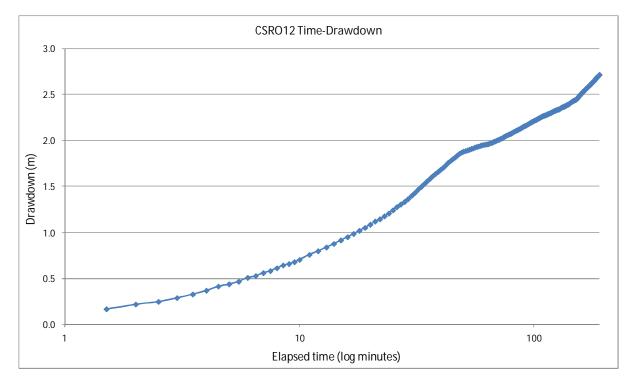
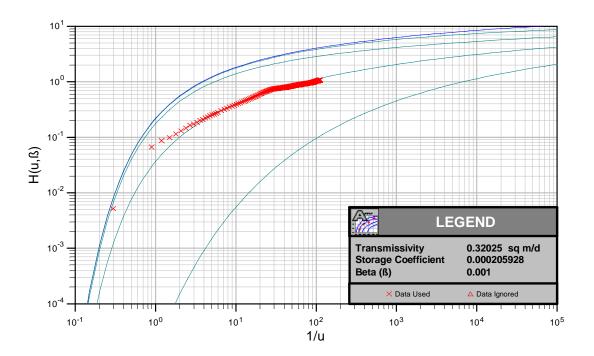
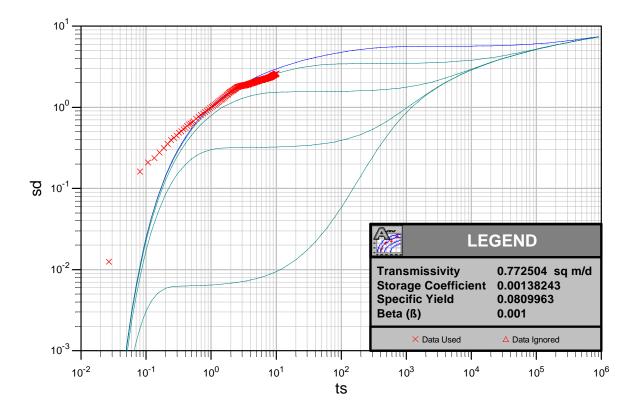



Figure 3.2 – CSRO12 Hantush (1960) analysis



 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

Figure 3.3 – CSRO12 Neuman (1972) analysis

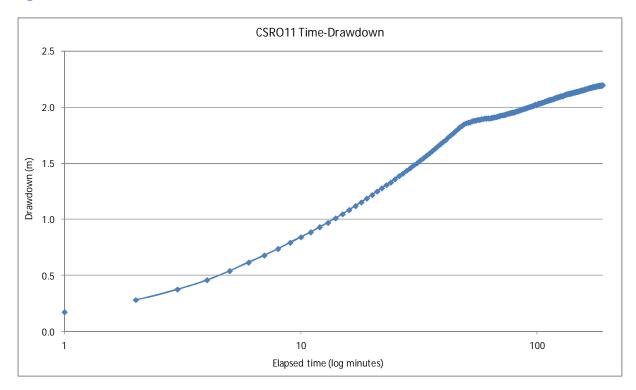
For both analyses, very early time data has been ignored to allow for well storage effects and time taken to establish a constant pumping rate.

The data shows a fairly good fit to the Hantush curve and a less good fit to the Neuman curve.

Unconfined aquifers usually show a 's' shaped curve. Initially the aquifer behaves as a confined aquifer as abstracted water is released from elastic storage, conforming to the Theis curve. The drawdown curve flattens off as dewatering accompanies the falling water table, comparable to leakage. The late time data then steepens again and conforms to the Theis curve as flow in the aquifer becomes largely horizontal.

As the test was terminated only three hours after abstraction had commenced it is possible that pumping had not continued long enough for the dewatering response to become very apparent. However, both the Hantush and Newman analyses suggest that leakage had started to occur before the test was curtailed. The beta value (Neuman's parameter) describes the relationship between vertical and horizontal hydraulic conductivity.

3.3 CSRO10 Constant rate Test, CSRO11 (Observation borehole 2)


Water levels at CSRO11 again showed a clear response to abstraction from CSRO10, with a maximum drawdown of 2.20m. The time-drawdown graph (Figure 3.4) shows the logger data from this borehole over the period of the CRT.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

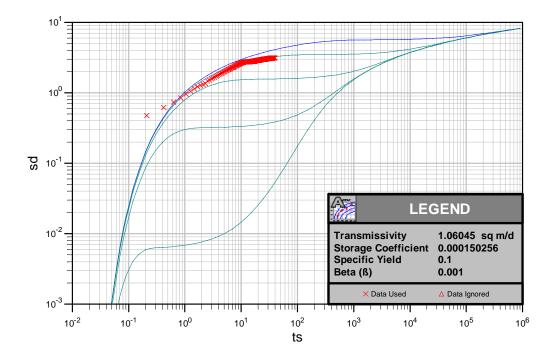
10

Again, there rate of drawdown decreases at around 50 minutes, coinciding with the increased rate of drawdown seen in the abstraction borehole. Similar to the response in CSRO12, the rate of drawdown decreases at this time before increasing again.

The Hantush (leaky confined) analysis is shown in Figure 3.5. The Neuman (unconfined) analysis is shown in Figure 3.6.

The CSRO11 results and fit of the data to the two analytical curves presented in this report are very similar to those from CSRO12, reflecting both the aquifer conditions and short duration of the test.

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:


 RAMBØLL
 Leonhardt, Andrä und Partner

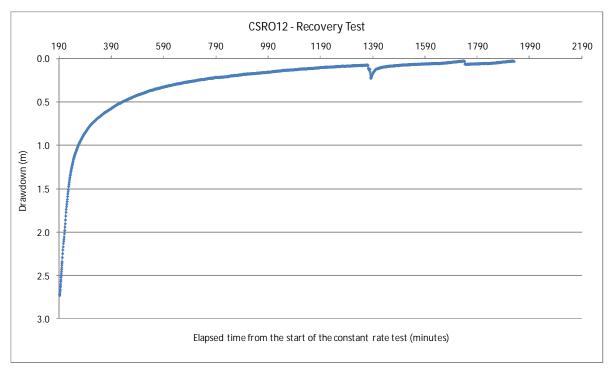
GRONTMIJ

Figure 3.5 – CSRO11 Hantush (1960) analysis

Figure 3.6 - CSRO11 Neuman (1972) analysis

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner


GRONTMIJ

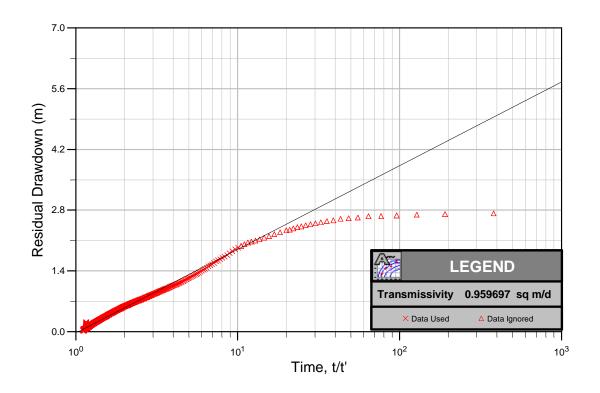
12

3.4 CSRO12 Recovery

The data loggers were left in the monitoring boreholes for over 24 hours after pumping terminated, to record water level recovery (Figure 3.7). Recovery data can be more reliable than pumping test data as there are no impacts due to fluctuations in pumping rate, but analysis only allows determination of transmissivity. Interestingly, Figure 2.1 shows that water level recovery in CSRO12 commenced as soon as the pump in CSRO10 (2m away) was shut down, even though the drawdown was much less than in the pumping borehole, while recovery in CSRO11 commenced later.

At the time of logger removal, the water level had recovered to within 0.03m of the rest water level prior to the CRT.

Figure 3.7 – CSRO12 Recovery Test Data


The recovery data shows a much smoother curve. The water level change at 1390 minutes (just over 23 hours) corresponds with the removal of the pump.

The data was analysed using the Theis (1935) recovery method. This method is applicable to both confined and unconfined aquifers if late time data is used. As such the early time data was set with a weight of 0 and therefore not used in the data optimisation process. The results are presented in Figure 3.8.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

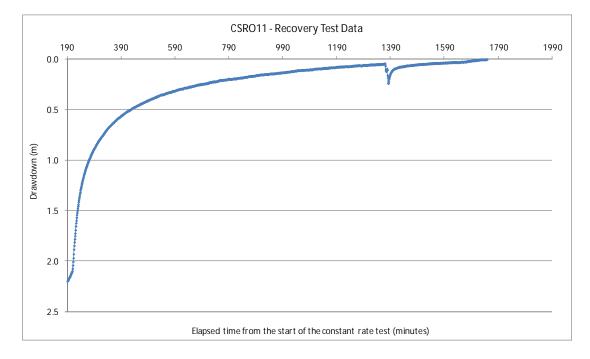
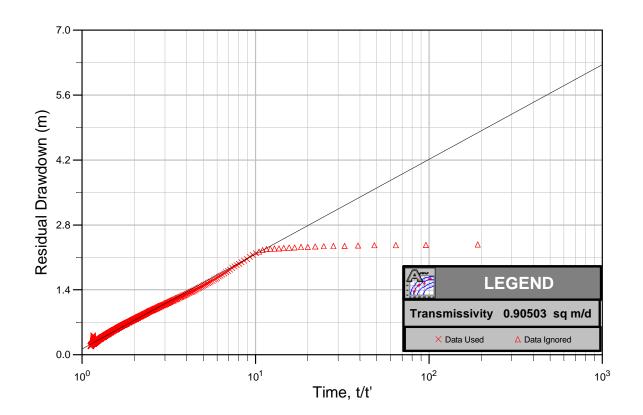

GRONTMIJ

Figure 3.8 – CSRO12 Theis (1935)Recovery Analysis

3.5 CSRO11 Recovery

Figure 3.9 – CSRO11 Recovery Test Data

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:


 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

The recovery data for CSRO11 is shown in Figure 3.9. A similar response is seen in CSRO11 and CSRO12.

Results were analysed using the Theis recovery method. Again, early time data has been ignored in the optimisation process.

Figure 3.10 – CSRO11 Theis (1935) Recovery Analysis

3.6 CSRO10 Recovery

Figure 3.11 shows the logger recovery data. The logger was removed from the borehole at the same time as the pump, around 20 hours after the end of the CRT. At this point water levels in the test borehole had recovered to within 0.08m of the rest water level prior to the test.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

Figure 3.11 - CSRO10 Recovery Test Data

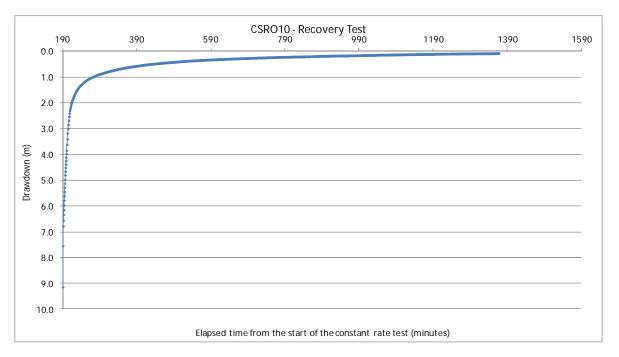
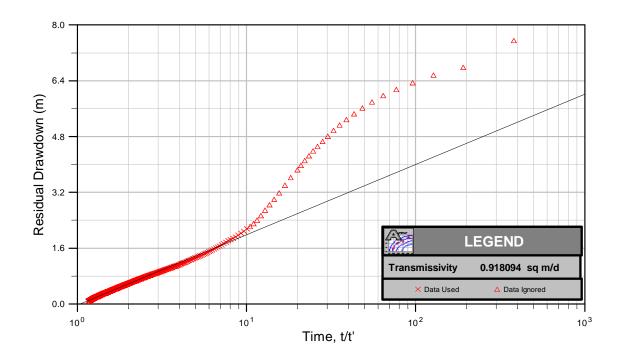



Figure 3.12 shows the Theis (1935) recovery analysis of the abstraction borehole data. Early time data has been ignored as above.

Figure 3.12 - CSRO10 Theis (1935) Recovery Analysis

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

3.7 Summary of estimated aquifer properties

Table 3.1 shows the estimated aquifer properties derived from the above analyses. Hydraulic conductivity (K) has been calculated from the transmissivity (T) and saturated aquifer thickness (b) using the following equation and converting the units to m/s: -

K = T/b

Table 3.1 – Summary of estimated aquifer properties

Observation Borehole	Test	Results			
		T (m ² /d)	S	K (m/s)	
CSRO12	Hantush (1960) CRT	0.32	2.06E-04	2.77E-07	
	Neuman (1972) CRT	0.77	1.38E-03	6.67E-07	
	Theis Recovery	0.96	-	8.29E-07	
CSRO11	Hantush (1960) CRT	1.01	1.43E-04	8.75E-07	
	Neuman (1972) CRT	1.06	1.50E-04	9.16E-07	
	Theis Recovery	0.91		7.82E-07	
CSRO10	Theis Recovery	0.92		7.93E-07	
	Mean	0.85	4.70E-04	7.34E-07	

Note: (d) assumed = 13.4m

3.8 Discussion of Results

Mean values of hydraulic conductivity (K) of 7.34 x 10^{-7} m/s and storage coefficient (S) of 4.70 x 10^{-4} were derived from data analysis. Pumping and observation borehole test and recovery data gave very similar K values, although these were one or two orders of magnitude less than those calculated from some of the permeability (falling head and packer) tests of other boreholes in the area. S values ranged from 2.06 x $10^{-4} - 1.38 \times 10^{-3}$. This range is at least one order of magnitude lower than would be expected for an unconfined aquifer, but may be due at least in part to the very limited aquifer thickness.

The rate of drawdown increased in the abstraction borehole at around 45 minutes into the CRT. At the same time the rate of drawdown in the observation boreholes decreased for a short period before increasing at the same rate as before. As discussed in Section 3.1, this is most likely to be associated with water levels dropping below the base of a more permeable section of the sandstone unit.

The analysis assumes that the aquifer is vertically and laterally homogeneous, isotropic and has infinite areal extent. In reality this is not the case and the sandstone is constrained both laterally and vertically, so it is possible that the increase in drawdown rate is a result of the cone of depression reaching a sandstone unit boundary, although if this was the case, an increase in drawdown rate would also be reflected in the observation boreholes.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

The other possibility is that the turbulent head loss component of the drawdown increases below the top few metres of the sandstone, perhaps because the borehole has not been developed sufficiently below this depth. Flow rates are so low that it is considered unlikely that the increase in turbulent head losses is because of the reducing inflow area to the borehole as water levels decrease.

The local transmissivity, a measure of the aquifer's ability to transmit water to the borehole, will have reduced as the aquifer became locally dewatered. The sandstone is only 12.5m thick in CSRO10 and the rest water level is around 1.7m below the top of this. The drawdown after 45 minutes was in the order of 3m or about 30% of the saturated aquifer thickness. However, if the transmissivity reduction was the main reason for the increased drawdown rate, then the rate of increase would be likely to be more gradual.

Analysis of test results indicate a small leakage response due to the unconfined nature of the sandstone unit, although the test had to be curtailed before the delayed yield (unconfined) response could become more apparent.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

4. CONCLUSIONS

- A constant rate pumping test was conducted in the sandstone unit close to Echline Corner. This unit comprises sandstone with interbedded mudstones. The aim of the test was to monitor groundwater levels in nearby observation boreholes under steady state conditions to allow the Thiem-Dupuit equation to be used to estimate the radius of influence of the dewatering abstraction. The test also allows bulk aquifer parameters to be determined.
- Pre-test pumping demonstrated that the sustainable pumping rate was extremely low (0.12 l/s; 10.37 m³/day). Even then, a marked increase in drawdown rate part way through the test meant that the test had to be terminated earlier than planned. Quasi-steady-state pumping conditions were therefore not achieved.
- A short-term reduction in drawdown rate in the observation boreholes roughly coincided with the marked increased rate of drawdown seen in the pumping borehole. This is most likely to be associated with water levels dropping below the base of a more permeable section of the sandstone unit, although it is also possible that there was a step increase in the turbulent head loss component of drawdown.
- The test duration was sufficient to allow analysis of the results, although the later-time aquifer responses were not obviously apparent. Test data was analysed using the Hantush (1960) method for leaky aquifers and Newman (1972) method for unconfined aquifers.
- Mean values of hydraulic conductivity (K) of 7.34 x 10⁻⁷ m/s and storage coefficient (S) of 4.70 x 10⁻⁴ were derived from data analysis. Pumping and observation borehole test and recovery data gave very similar K values, although these were one or two orders of magnitude less than those calculated from some of the permeability (falling head and packer) tests of other boreholes in the area. S values ranged from 2.06 x 10⁻⁴ 1.38 x 10⁻³. This range is at least one order of magnitude lower than would be expected for an unconfined aquifer, but may be due at least in part to the very limited aquifer thickness.
- Analysis of test results indicate a small leakage response due to the unconfined nature of the sandstone unit, although the test had to be curtailed before the delayed yield (unconfined) response could become more apparent.
- The analytical methods assume that the aquifer is vertically and laterally homogeneous, isotropic and has infinite areal extent. In reality, the sandstone unit under test is laterally and vertically constrained, and is likely to be anisotropic in terms of hydrogeological properties due to the presence of interbedded mudstones and fractures. This is borne out by the step change in drawdown rate in the pumping borehole, which is considered most likely to be due to water levels dropping below a more permeable horizon. The local transmissivity, a measure of the aquifer's ability to transmit water to the borehole, will also have reduced as the aquifer became locally dewatered.
- The test demonstrates that the limited thickness and lateral extent of the sandstone unit means that dewatering abstraction rates are likely to be significantly less than those predicted from aquifer properties, particularly after the initial phase of pumping.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

19

5. REFERENCES

Kruseman, G. P. and de Ridder, N. A. (2000) Analysis and Evaluation of Pumping Test Data (Second Edition). ILRI puplication 47

Hantush, M. S. (1960) Modification of theory of leaky aquifers. J. Geophys. Res., Vol. 65, pp. 3713-3725

Neuman, S. P. (1972) Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Res., Vol. 8, pp. 1031 - 1045

Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Trans. Amer. Geophys. Union, Vol. 16, pp. 519-524.

FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE: RAMBØLL Leonhardt, Andrä und Partner

GRONTMIJ

ANNEX A1

BOREH	IOLE	LOGS
-------	------	------

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrå und Partner

FRC-P-____E-099-R-NT-EAR-06001-04

GRONTMIJ

🖌 Gr	ontn	nij				BOF	REHO	LE LOG		REHOLE No SRO10
Project							Client		Logge	d By
orth Rep	lacemer	nt Cros	sing	- Cons	tructio	n Phase	Epothnerpsei	Bogatidas (Lanstrenta	(ê)	CD/CA
Job No		Dat	te 1	1-03-12		Ground L	₋evel (m)	Co-ordinates	Check	ed By
107	442		1:	2-03-12		Ę	55.73	E 311,427.4 N	677,750.1	
SAMPLE	ES & TE		Water	Reduced	Logon	Depth	1	STRATA DESCRIPTIO	N	Instrument
Depth	Type No	Result	Wa	Level		(Thickness)			•	Instr
				55.53	1×~~~	4	Brown sandy	gravelly CLAY with cobble	es and boulders notted.	(Driller's
				55.23	<u>-{ }</u>	- 0.50	description)	ANDSTONE with thin bed		
							description)			
						-				
						Ē				
						-				
						F				
						Ę				
						-				
						E E				
						-				
						-				
						-				
						F				
						F				
						-				
			Ţ			(12.50)				
			Ŧ			<u>-</u>				
						-				
						E_				
						-				
						-				
						ŀ				
						È				
	Grou	undwater	 r			neral Rem	harks			Final Depth
ike Depth: (m) R 7	tising to: (m)	Groundwa	ter Rer	narks				g (DTHH). Standpipe installed.		15m bgl
Contractor (ЭТ					lethod/ lant Used			All dimensions in me	
					· ·				1	Sheet 1 of 2

Froject	ontn	nij				REHO	LE LOG		DREHOLE N	
-	lacemei	nt Cros	sina	- Construct			engatidas (Lanaturate		CD/CA	
Job No		Dat		1-03-12	Ground L		Co-ordinates		ked By	
107	442			2-03-12	Ę	55.73	E 311,427.4 N 6	677,750.1		
SAMPLE			er			1	STRATA			ment kfill
Depth	Type No	Test Result	Water	Reduced Lege Level	end Depth (Thickness)		DESCRIPTION	J	4	Instrument Backfill
				42.73	13.00	Black MUDS	TONE. (Driller's description		5	
	Grou	undwate	 r	 	 General Rem	harks			Final Dept	th
Strike Depth: (m) F	Rising to: (m)				Put down by 100mn		g (DTHH). Standpipe installed.		15m bg	
Contractor (GT				Method/ Plant Used			All dimensions in m	netres Scale 1:50 Sheet 2 d	

🧲 Gi	rontr	nij			E	BOF	REHOLE	LOG		BOREHOLE No CSRO11
Project							Client		Lo	gged By
Forth Rep	laceme	nt Cros	sing	- Cons	tructio	n Phase	Epothn@npszis0g&t	idas (Lonstration	ê)	CA
Job No		Da	^{te} 2	6-03-12		Ground L	evel (m) Co-o	ordinates	Cł	necked By
107	442		2	6-03-12		Ę	55.61 E	E 311,432.1 N 6	677,749.0	
SAMPL			ы				STR/			nent
Depth	Type No	Test Result	Water	Reduced Level	Legenc	(Thickness)		DESCRIPTION	J	Instrument
 - -						(0.50)	Brown sandy TILL (Driller's description)		
			1	55.11		(13.50)	Light orange brown	SANDSTONE (Drill	er's description)	
- - -						- - -				
-		undwate			Ge	<u> </u> neral Rem	arks			Final Depth
Strike Depth: (m) 4				marks			n rotary open hole drilling (DTHH).	Standpipe installed.		15m bgl
Contractor	GT					ethod/ ant Used			All dimension	s in metres Scale 1:50 Sheet 1 of 2

Grontmij		BOR	EHOLE LOG	BOREHOLE No CSRO11
Project			lient	Logged By
	ng - Constructio		poth Grazeis gatidas (Lanstrants	
ob No Date	26-03-12	Ground Lev		Checked By
	26-03-12	55	5.61 E 311,432.1 N 6	
SAMPLES & TESTS Depth Type No Test	Reduced Legen	d Depth	STRATA DESCRIPTION	Instrument
Result		(Thickness)		
Groundwater		14.00 (1.00) 15.00		
ike Depth: (m) Rising to: (m) Groundwater F			tary open hole drilling (DTHH). Standpipe installed.	
				15m bgl

🧹 Gi	rontn	nij			E	BOF	REHO	LE LOG	I	BOREHOLE	
Project							Client		Lo	gged By	
Forth Rep	blaceme	nt Cros	sing	I - Cons	truction	Phase	Epothnerpse	isocaticas (Canstrants	e)	CA	
Job No		Da	^{ite} 2	7-03-12		Ground L	_evel (m)	Co-ordinates	Ch	ecked By	
107	7442		2	7-03-12		Ę	55.83	E 311,426.0 N 6	677,752.4		
SAMPL			er					STRATA			nent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)		DESCRIPTION	Ν		Instrument Backfill
							Brown sandy	/ TILL (Driller's description))		-
-				55.23		(0.60) 0.60					
-				00.20		0.00	Light brown	and orange SANDSTONE	(Driller's description)	1
-					· · · · · · · ·	-					
-						-					
-						-					
-					· · · · · · · ·	-					
-						-					
-					· · · · · · · · · · · · · · · · · · ·	-					
-						-					
-						-					
-						-					
-											
-			1		· · · · · · · · · · · · · · · · · · ·	-					
-			Ţ			-					
-						-					
-						-					
-						-					
-					· · · · · · · · · · · · · · · · · · ·	-					
-						-					
-						-					
-						-					
-						-					
-						-					
-						-					
-						-					
-						-					
-						-					
-						(14.20)					
-						-					
-						-					
						-					
-					· · · · · · · · · · · · · · · · · · ·	-					
-					· · · · · · · · · · · · · · · · · · ·	-					
						-					
-					· · · · · · · · · · · · · · · · · · ·	-					
-	Gro	undwate	<u> </u>			- neral Rem	harks			Final Dep	nth
Strike Depth: (m) 3.9	Rising to: (m)	Groundwa Water Strike	ater Re	marks		dpipe installed.					
Quet i	<u></u>					- 41 14			1	15m b	gi
Contractor	GI				Me Pla	ethod/ ant Used			All dimensions	s in metres Scale 1:50 Sheet	t1 of 2

Grontmij			BOP	SEHU	LE LOG	CSR	012
-							
roject				Client		Logged By	
	-	- Construct			edamismes) eabirger		
ob No 107442	Date 2	7-03-12 7-03-12		Level (m) 55.83	Co-ordinates	Checked By	
		1-03-12			E 311,426.0 N 6	011,102.4	
SAMPLES & TESTS	U	Reduced Lege	nd Depth		STRATA DESCRIPTION	1	Instrument
Res	ult S	Level	(Thickness)	Linkthan			
Groundw	ater	41.03 40.83	14.8 15.0	D Dark brown N End of Hole a	/UDSTONE (Driller's desc		
Groundw ke Depth: (m) Rising to: (m) Grour	ater ndwater Rer		General Rer Standpipe installed			Fir	nal Deptl
						15	ōm bg

🦨 Gr	Grontmij		E	BOF	REHO	LE LOG		BOREHOLE CSRO0			
Project							Client			ogged By	
Forth Rep	laceme	nt Cros	ssing					ng Bridge Constructor		RN	
Job No		Da	0	5-12-11			_evel (m m OD)			Checked By	
1074	42S		0	5-12-11		Ę	57.32	E 311,411.2 N 6	677,688.7		
SAMPLE Depth	ES & TE		Water	Reduced Level	Legend	(Thickness)		STRATA DESCRIPTION	J		Instrument Backfill
				57.12	<u> 17</u>	0.20		iller's description)			
			₽	56.72		(0.40) 0.60		gravelly CLAY (Driller's de		le description)	
- 2.70-7.00	D			51.82		(4.90)		ne to medium grained SA	NDSTONE (Driller	's description)	
-	Gro	undwate				(7.50)	(Driller's desc	grey fine grained SANDST	ONE and black M		
Strike Depth: (m) R 0.6	Gro (m)	Undwate Groundw Water Strike	ater Re	marks		neral Rem				Final D	
	<u></u>	vater Strike							1	15m	bgl
Contractor (וכ					ethod/ ant Used			All dimensio	ons in metres Scale 1:50 She	et 1 of 2

4	Grontmij	
---	----------	--

BOREHOLE No
CSRO03A

Project	_	_						ed By	
Forth Rep Job No	laceme	nt Cros: Dat	-				Forth Crossing Bridge Constructors (CJV) evel (m m OD) Co-ordinates Chec	RN ked By	
1074	425		0:	5-12-11 5-12-11			57.32 E 311,411.2 N 677,688.7	Red Dy	
SAMPLE		272					STRATA		ti _
Depth	Type No	Test	Water	Reduced	Legend		DESCRIPTION		Instrument Backfill
Depth	D	Result		Reduced Level		(2.00) 15.00	Interbedded grey fine grained SANDSTONE and black MUDS (Driller's description) <i>(continued)</i> Black MUDSTONE (Driller's description) End of Hole at 15m bgl.	STONE	
Strike Depth: (m) F	tising to: (m)	undwatei Groundwa	ter Ren	narks		neral Rem	arks	Final Dep	
								15m bg	gl
Contractor (GT				M Pl	ethod/ lant Used	All dimensions in r	metres Scale 1:50 Sheet 2	of 2

Grontmi	
Grontin	J

BOREHOLE	No
S78	

Destant							Olivet	
Project Forth Rep	laceme	nt Cros	sing				Client Logged By Forth Crossing Bridge Constructors (CJV) GM+CR	
Job No		Da	te 18	3-05-09		Ground L	Level (m m OD) Co-ordinates Checked By	
1074	42S			9-06-09		Ę	56.36 E 311,406.6 N 677,780.2	
SAMPLE	ES & T	ESTS	Ъ				STRATA	nent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Instrument
0.20	D			55.96	<u>x 1, x 1,</u> 1, <u>x 1,</u>	(0.40) 0.40	TOPSOIL: Dark brown slightly sandy slightly gravelly clay with many rootlets. Gravel is sub angular to sub rounded fine to coarse of	-
- 0.50 0.50	B				×× 0	4	Firm brown slightly gravelly sandy CLAY with silty laminations. Gravel is	1
0.50	В			55.56 55.36	× × ×	1.00		
-0.50 1.00 1.00 1.00	D B D B			54.86		(0.50) 1.50	Brown very silty very gravelly fine to medium, occasionally coarse SAND. Gravel is sub angular and sub rounded fine to medium of predominantly sandstone.	
1.00	D			54.65	· · · · · · ·	1.71	SANDSTONE (Open holed) (Driller's description).	1
-						-	Strong brown fine and medium grained SANDSTONE, slightly //weathered, recovered non intact.	1
-						Ē	No recovery SANDSTONE (Driller's description).	
-						E		
-						(1.79)		
-						Ē		
-						-		
-				52.86		3.50		
3.50	С					-	Moderately strong brown fine grained SANDSTONE. Moderately	
-				52.56		<u>- 3.80</u>	2 weathered with penetrative iron oxide orange staining. Non intact. Moderately strong grey fine to medium grained SANDSTONE, slightly	-
4.00	С		1		· · · · · · · ·	-	weathered. Bedding fractures medium to closely spaced, dip 10?,	
-			Ť			Ę	undulating, rough, with patchy iron oxide staining and dark discolouration.	
4.50	С				· · · · · · · · · · · · · · · · · · ·	Ę	3.90 - 3.90 At 3.80m to 4.05m, fractures sub vertical undulating rough	
-					· · · · · · ·		tight clean, intersecting at 90? 4.00 - 4.00 At 4.05m to 4.09m, very weak grey mudstone.	
_ 5.10	с				· · · · · · · · · · · · · · · · · · ·	-	4.10 - 4.10 From 3.94m to 4.03m, non intact	
. 5.10					· · · · · · · · · · · · · · · · · · ·	È		
-						(3.70)		
-					· · · · · · · · · · · · · · · · · · ·	[(3.70)		
-						-	6.00 - 6.00 From 5.96m to 6.06m, non intact	
-						F		
-					· · · · · · · ·			
6.75	С				· · · · · · · ·	ŀ		
_6.80	C				· · · · · · · · · · · · · · · · · · ·			
-					· · · · · · ·	F		
-				48.86	· · · · · · ·	7.50	7.40 - 7.40 Hom 7.40 m to 7.50 m, non intact	
						(0.90)	Moderately strong thin to thickly bedded grey fine grained SANDSTONE. Fresh. Bedding fractures closely to widely spaced 5? to 15?, undulose and rough, locally infilled with clay.	
8.10 8.20	C C			47.96		8.40	8.10 - 8.10 From 8.10m to 8.22m, non intact.	
				-1.50		- 0.40	Moderately strong to strong thin to thickly bedded dark brown fine and	1
-						Ē	medium grained SANDSTONE. Fresh. Bedding fractures are very close to widely spaced 5? to 15?, undulose and rough, locally infilled with clay.	
-					· · · · · · ·	-		
-					· · · · · · · · · · · · · · · · · · ·	Ē		
9.50	с					(2.20)	9.40 - 9.40 From 9.40m to 9.50m, non intact	
					· · · · · · ·			
-	0.00				<u></u>	<u> </u>		<u> </u>
Strike Depth: (m) F		Groundwate		narks		neral Rem d dug inspection	narks n pit 0.50m x 0.50m to 1.00m depth. Soils borehole terminated at 1.00m on possible sandstone lity test (Falling Head) undertaken at 4.00m. Packer test undertaken at 5.50m. Borehole completed at	epth
4.3					13.0	rock. Permeabili 00m, 50mm stan valve.	Itly test (Falling Head) undertaken at 4.00m. Packer test undertaken at 5.50m. Borehole completed at ndpipe installed to 13.00m slotted from 2.00m to 13.00m finished at ground level with screw cap and 13m b	ogl
Contractor (GMcA+	RL				lethod/	All dimensions in metres Scale 1:50	
					P	lant Used		t 1 of 2

Grontm	i	j
	7	,

BOREHOLE	No
S78	

Project							Client		(0.1).	Logged By	
Forth Rep	laceme			Í				ng Bridge Constructo	rs (CJV)	GM+CR	
Job No 1074	142S	Da	10	8-05-09 9-06-09			₋evel (m m OD) 56.36	Co-ordinates E 311,406.6 N	677,780.2	Checked By	
SAMPLE	ES & TE	ESTS	Ļ			<u> </u>		STRATA		I	ent
Depth	Type No		Water	Reduced Level	Legend	d Depth		DESCRIPTIO	N		Instrument Backfill
10.50	с			45.76		10.60	medium grain to widely space (continued) Moderately we white sandsto	rong to strong thin to thick ed SANDSTONE. Fresh. ced 5? to 15?, undulose a eak thinly laminated grey ne laminae. Unweathere	Bedding fracture and rough, locally MUDSTONE with d. Bedding fractu	es are very close rinfilled with clay. h occasional res are close to	
11.40 11.50 11.80 12.30	с с с					(2.40)	smooth and c carbonate coa 11.30 - 11.30 11.60 - 11.60	sely spaced 5? to 15? pla lean. Fractures dip 70? si ating. From 11.29m to 11.35m, From 11.66m to 11.72m, From 11.94m to 12.48m,	tepped smooth tig non intact non intact	, rough and ght with	
12.75	с			43.36		13.00	12.85 - 12.85	From 12.85m to 13.00m,	no recovery.		
	Gro	undwate					End of Hole a			Final De	epth
Strike Depth: (m) F		Groundwa			bed 13.0	drock. Permeabili	ity test (Falling Head) und	00m depth. Soils borehole terminated a dertaken at 4.00m. Packer test undertak n slotted from 2.00m to 13.00m finished	en at 5.50m. Borehole con	npleted at	bgl
Contractor (3McA+F	RL				/lethod/ Plant Used			All dime	nsions in metres Scale 1:50 Shee	et 2 of 2

🖌 Grontmi	j
-----------	---

BOREHOLE	No
S80	

Project						Client Forth Crossir	ng Bridge Constru	(C V)	Logged	l By MB	
Forth Rep	laceme	nt Cros	+0			_evel (m m OD)			Checke		
	442S		0.	3-06-09 3-06-09		56.48		N 677,807.6	Checke	Su Dy	
				<u> </u>				1 077,007.0			t
SAMPL Depth	Type No		Water	Reduced Legend	d Depth		STRATA DESCRIF	TION			Instrument Backfill
		Result	3	Level	(Thickness)						Inst B
				56.28 56.28	- 0.20 -		Iler's description) (O (Driller's description				-
					- - - [(/(
-					 - 						
- -					(1.50) 						
-											
-				54.78	1.70						
-						Sandy CLAY (Driller's description)	(Open holed).			
-				54.23	(0.33) 2.25						
- - -					 - 	Boulder CLAY	(Driller's descriptior	i) (Open holed).			
-											
-				 	- <u>-</u> (1.55)						
-											
- - -					Œ						
-				52.68	3.80		(Driller's description)	(Open holed)			-
-					(0.70)		()	(0000000)			
-				51.98	4.50						
4.50	C			51.68	4.80	No recovery.	MUDSTONE(Driller's	description).			1
- - 					-	Moderately str	ong thinly bedded mered with siltstone in	edium grained bro	wn SANDS	STONE	1
- - -					 	medium space	ed dip 10 - 20? plana ry thin clay fill. Joints	ar to undulating rou	gh fresh, ti	ight with	
-					- - -	vertical undula	ating rough weathere	d iron oxide stainin	ig and thin		
- -					· · · · · · · · · · · · · · · · · · ·	5.00 - 5.00 FIG	om 4.75m to 5.05m j	onits crossing at 40	· · ·		
-					-						
6.45 6.50	C C				- - - -						
-											
-					· . · · ·						
					· - · - · -						
-											
- -			Ť		- (6.20)						
8.30	С				· -						
-											
					· -						
-					· = -	9.00 - 9.00 fro	m 8.90m, clay fill in l	pedding fractures u	p to 1cm t	hick.	
- - -					· = · = · =						
-					· -						
-	Gro	undwate	r) Darke				Final De	
Strike Depth: (m) 8.05				narks Har on	17 June 2009. 19	n pit 0.50m x 0.50m to 1.2 9mm standpipe piezomete	20m depth. Borehole completed er installed, tip at 8.30m and 50r	at 13.25m. Televiewer survey nm standpipe installed at 3.50	m slotted		
				fror	m 1.00m to 3.50n	n.				13.25m	bgl
Contractor	RL				lethod/			,	imonsions in a	trac Socia 4-50	
				P	Plant Used			All di	imensions in met		t1 of 2

Grontm	ij
	•

BOREHOLE	Nc
S80	

Project							Client	Logge		
Forth Repl	aceme		-				Forth Crossing Bridge Constructors (CJV)		MB	
Job No		Dat	te 03	3-06-09		Ground L	evel (m m OD) Co-ordinates	Check	ed By	
1074	42S		03	3-06-09		5	6.48 E 311,414.0 N 677,807.6			
SAMPLE	S & TE	ESTS	Ŀ				STRATA			nent fill
Depth	Type No	Test Result	Water	Reduced Level	Legend	(Thickness)	DESCRIPTION			Instrument Backfill
10.50	С			45.48		11.00	Moderately strong thinly bedded medium grained br slightly weathered with siltstone inclusions. Bedding medium spaced dip 10 - 20? planar to undulating ro occasional very thin clay fill. Joints medium to widel vertical undulating rough weathered iron oxide stain (continued) Strong medium grained dark grey SANDSTONE, fre	fractures of ugh fresh, y spaced ir ing and thi	close to tight with iclined	-
				44.48		(1.00)	11.63 - 11.63 At 11.63m, bedding fractures dip 8? p tight and clean.	lanar rougl		-
- - - - -				44.13		12.35	Strong laminated dark grey calcareous slightly mica fresh with closely spaced calcite laminations. Beddi spaced, dip 8 - 10?, undulating, rough, fresh, tight a Moderately strong thinly laminated black calcareous fresh. Bedding fractures closely spaced, sub horizon	ng fracture nd clean. irony MUE	s closely	
- 	С			43.23		(0.90) 13.25	fresh, tight and clean. 12.90 - 12.90 From 12.95m, 3 closely spaced sub h of calcite.	•		
							End of Hole at 13.25m bgl.			
Strike Depth: (m) Ri	sing to: (m)	Undwate Groundwa	ter Ren	narks	Hanor Hanor	neral Rem d dug inspection 7 June 2009. 19 1 1.00m to 3.50m	pit 0.50m x 0.50m to 1.20m depth. Borehole completed at 13.25m. Televiewer surv nm standpipe piezometer installed, tip at 8.30m and 50mm standpipe installed at 3	ey undertaken 50m slotted	Final De 13.25m	
Contractor R	·I					ethod/				J'
	· L					ant Used	A	l dimensions in m		2 of 2

ANNEX A2

TEST DATA (MANUAL OBSERVATIONS)

 FORTH REPLACEMENT CROSSING - DESIGN JOINT VENTURE:

 RAMBØLL
 Leonhardt, Andrä und Partner

GRONTMIJ

Project: Forth Road Crossing	Test: Constant rate test	Abstraction borehole: CSRO10
Date: 30/05/2012	Weather: Overcast, chilly, very fine drizzle at times but mostly dry	Monitored borehole: CSRO10
		Datum: Top of BH casing
		Datum elevation: 56 207 mAOD

	Time 09:00:00 09:01:30 09:01:30 09:02:00 09:02:30 09:03:30 09:03:30	time (mins) 0 0.5 1 1.5	(mbdat) 2.60	(mAOD) 53.61	(m)	reading (I/s)	(m ³)
	09:00:30 09:01:00 09:01:30 09:02:00 09:02:30 09:03:00	0.5			0.00	0.01	1.591
	09:01:30 09:02:00 09:02:30 09:03:00				0.00	0.01	1.591
	09:02:00 09:02:30 09:03:00	1.5	3.10	53.11	0.50	0.1	1.595
	09:02:30 09:03:00		3.19	53.02	0.59	0.12	1.597
	09:03:00	2	3.29	52.92	0.69	0.12	1.5
		2.5	3.34	52.87	0.74	0.12	1.512
	09.03.30	3	3.39	52.82	0.79	0.12	1.514
		3.5	3.43	52.78	0.83	0.12	1.505
	09:04:00 09:04:30	4.5	3.47 3.50	52.74 52.71	0.87	0.12	1.515 1.515
	09:05:00	4.5	3.50	52.67	0.90	0.12	1.515
	09:05:30	5.5	3.58	52.63	0.98	0.12	1.515
	09:06:00	6	3.62	52.59	1.02	0.12	1.515
	09:06:30	6.5	3.66	52.55	1.06	0.12	1.515
	09:07:00	7	3.69	52.52	1.09	0.12	1.515
	09:07:30	7.5	3.73	52.48	1.13	0.12	1.515
	09:08:00	8	3.75	52.46	1.15	0.12	1.515
	09:08:30	8.5					
	09:09:00	9	3.81	52.40	1.21	0.12	
-	09:09:30 09:10:00	9.5 10	3.84 3.86	52.37 52.35	1.24 1.26	0.12	
	09:10:00	10	3.00	52.33	1.20	0.12	
	09:11:00	11	3.91	52.30	1.31	0.12	
	09:13:00	13	4.01	52.20	1.41	0.12	1.526
	09:14:00	14	4.05	52.16	1.45	0.12	1.521
	09:15:00	15	4.10	52.11	1.50	0.12	1.524
	09:16:00	16	4.13	52.08	1.53	0.12	1.531
	09:17:00	17	4.19	52.02	1.59	0.12	1.533
	09:18:00	18	4.24	51.97	1.64	0.12	1.549
	09:19:00	19	4.26	51.95	1.66	0.12	1.542
	09:20:00	20	4.31	51.90	1.71	0.13	1.427
	09:22:00	22	4.37	51.84	1.77	0.12	1.555
	09:24:00 09:26:00	24 26	4.44	51.77 51.71	1.84 1.90	0.12	1.577 1.573
	09:28:00	28	4.55	51.66	1.90	0.12	1.882
	09:30:00	30	4.60	51.61	2.00	0.12	1.691
	09:32:00	32	4.67	51.54	2.07	0.12	1.602
	09:34:00	34	4.71	51.50	2.11	0.12	1.617
	09:36:00	36	4.76	51.45	2.16	0.13	1.625
	09:38:00	38	4.81	51.40	2.21	0.12	1.624
	09:40:00	40	4.86	51.35	2.26	0.12	1.633
	09:45:00	45	4.97	51.24	2.37	0.13	1.755
	09:50:00	50	5.12	51.09	2.52	0.13	1.881
	09:55:00	55	5.36	50.85	2.76	0.12	1.703
	10:00:00	60 70	5.67	50.54	3.07	0.12	1.722
	10:10:00	80	6.36 7.01	49.85 49.20	3.76 4.41	0.12	1.766 2.811
	10:30:00	90	7.61	48.60	5.01	0.12	2.859
	10:40:00	100	8.18	48.03	5.58	0.12	2.999
	10:50:00	110	8.68	47.53	6.08	0.12	2.925
_	11:00:00	120	9.16	47.05	6.56	0.12	2.061
	11:20:00	140	10.09	46.12	7.49	0.12	2.032
	11:25:00	145	10.35	45.86	7.75		
_	11:30:00	150	10.52	45.69	7.92		
	11:40:00	160	10.90	45.31	8.30	0.11	2.101
	12:00:00	180	11.52	44.69	8.92	0.11	2.261
	12:05:00	185	11.69	44.52	9.09	0.11	
	12:10:00 12:10:00	190 0	11.90 11.90	44.31 44.31	9.30 9.30	0.11 **Start of rec	overv**
	12:10:00	0.5	10.01	46.20	5.30 7.41	OLATE OF THE	
	12:10:00	0.5	9.32	46.89	6.72		
	12:11:30	1.5	9.13	47.08	6.53		
	12:12:00	2	8.94	47.27	6.34		
	12:12:30	2.5	8.75	47.46	6.15		
	12:13:00	3	8.56	47.65	5.96		
	12:13:30	3.5	8.37	47.84	5.77		
	12:14:00	4	8.20	48.01	5.60		
	12:14:30	4.5	8.03	48.18	5.43		
	12:15:00	5	7.87	48.34	5.27		
	12:15:30	5.5	7.70 7.55	48.51 48.66	5.10 4.95		
	12:16:00 12:16:30	6.5	7.55	48.66	4.95		
	12:17:00	6.5	7.40	48.96	4.60		
	12:17:30	7.5	7.11	49.10	4.51		

12:18:00	8	6.98	49.23	4.38
12:18:30	8.5	6.84	49.37	4.24
12:19:00	9	6.70	49.51	4.10
12:19:30	9.5	6.57	49.64	3.97
12:20:00	10	6.44	49.77	3.84
12:21:00	11	6.21	50.00	3.61
12:22:00	12	5.99	50.22	3.39
12:23:00	13	5.78	50.43	3.18
12:24:00	14	5.59	50.62	2.99
12:25:00	15	5.43	50.78	2.83
12:26:00	16	5.27	50.94	2.67
12:27:00	17	5.11	51.10	2.51
12:28:00	18	4.97	51.24	2.37
12:29:00	19	4.89	51.32	2.29
12:30:00	20	4.80	51.41	2.20
12:32:00	22	4.68	51.53	2.08
12:34:00	24	4.54	51.67	1.94
12:36:00	26	4.45	51.76	1.85
12:38:00	28	4.40	51.81	1.80
12:40:00	30	4.31	51.90	1.71
12:42:00	32	4.25	51.96	1.65
12:44:00	34	4.18	52.03	1.58
12:46:00	36	4.13	52.08	1.53
12:48:00	38	4.08	52.13	1.48
12:50:00	40	4.04	52.17	1.44
12:55:00	45	3.95	52.26	1.35
13:00:00	50	3.87	52.34	1.27
13:05:00	55	3.81	52.40	1.21
13:10:00	60	3.75	52.46	1.15
13:20:00	70	3.66	52.55	1.06

Project: Forth Road Crossing	Test: Constant rate test	Abstraction borehole: CSRO10
Date: 30/05/2012	Weather: Overcast, chilly, very fine drizzle at times but mostly dry	Monitored borehole: Obs 2 (CSRO11)
		Datum: Top of BH casing
		Datum elevation: 55.915 mAOD
wanuarry		
dipped		

		dipped			
	Elapsed	water level	Water level		
Time	time (mins)	(mbdat)	(mAOD)	(m)	
09:00:00	0	2.020	53.895	0.000	
09:00:30	0.5	2.373	53.542	0.353	
09:01:00 09:01:30	1.5	2.373	53.484	0.353	
09:02:00	2	2.431	53.404	0.411	
09:02:30	2.5	2.533	53.382	0.513	
09:03:00	3	2.583	53.332	0.563	
09:03:30	3.5	2.625	53.290	0.605	
09:04:00	4	2.668	53.247	0.648	
09:04:30	4.5	2.000	00.247	0.040	
09:05:00	5	2.797	53.118	0.777	
09:05:30	5.5	2.782	53.133	0.762	
09:06:00	6	2.826	53.089	0.806	
09:06:30	6.5	2.854	53.061	0.834	
09:07:00	7	2.882	53.033	0.862	
09:07:30	7.5	2.912	53.003	0.892	
09:08:00	8	2.940	52.975	0.920	
09:08:30	8.5				
09:09:00	9	2.992	52.923	0.972	
09:09:30	9.5	3.015	52.900	0.995	
09:10:00	10	3.043	52.872	1.023	
09:11:00	11	3.086	52.829	1.066	
09:12:00	12	3.128	52.787	1.108	
09:13:00	13	3.167	52.748	1.147	
09:14:00	14	3.210	52.705	1.190	
09:15:00	15	3.246	52.669	1.226	
09:16:00	16	3.286	52.629	1.266	
09:17:00	17	3.317	52.598	1.297	
09:18:00	18	3.353	52.562	1.333	
09:19:00	19	3.385	52.530	1.365	
09:20:00	20	3.408	52.507	1.388	
09:22:00	22	3.465	52.450	1.445	
09:24:00	24 26	3.525	52.390	1.505	
09:26:00	26	3.576	52.339	1.556	
09:28:00 09:30:00	30	3.626 3.688	52.289 52.227	1.606 1.668	
09:32:00	32	5.000	52.221	1.000	
09:34:00	34	3.769	52.146	1.749	
09:36:00	36	3.812	52.103	1.792	
09:38:00	38	3.853	52.062	1.833	
09:40:00	40	3.888	52.027	1.868	
09:45:00	45	3.983	51.932	1.963	
09:50:00	50	4.051	51.864	2.031	
09:55:00	55	4.076	51.839	2.056	
10:00:00	60	4.093	51.822	2.073	
10:10:00	70	4.122	51.793	2.102	
10:20:00	80	4.156	51.759	2.136	
10:30:00	90	4.190	51.725	2.170	
10:40:00	100	4.222	51.693	2.202	
10:50:00		4.252	51.663	2.232	
11:00:00	120	4.279	51.636	2.259	
11:20:00	140	4.321	51.594	2.301	
11:40:00	160	4.340	51.575	2.320	
12:00:00	180	4.380	51.535	2.360	
12:05:00	185	4.390	51.525	2.370	
12:10:00	190	4.378 4.378	51.537	2.358	** Start of recovery**
12:10:00 12:10:30	0.5	4.378	51.537 51.540	2.356	**Start of recovery**
12:11:00	1	4.374	51.540	2.354	
12:11:30	1.5	4.372	51.543	2.352	
12:12:00	2	4.372	51.543	2.352	
12:12:30	2.5	4.372	51.543	2.352	
12:13:00	3	4.373	51.542	2.353	
12:13:30	3.5	4.372	51.543	2.352	
12:14:00	4	4.368	51.547	2.348	
12:14:30	4.5	4.365	51.550	2.345	
12:15:00	5	4.365	51.550	2.345	
12:15:30	5.5	4.362	51.553	2.342	
12:16:00	6	4.359	51.556	2.339	
12:16:30	6.5	4.355	51.560	2.335	
12:17:00	7	4.352	51.563	2.332	
12:17:30	7.5	4.345	51.570	2.325	
12:18:00	8	4.345	51.570	2.325	
12:18:30	8.5	4.345	51.570	2.325	

12:19:00 9 4.340 51.575 12:19:30 9.5 4.339 51.576 12:20:00 10 4.335 51.580 12:21:00 11 4.334 51.581 12:22:00 12 4.325 51.590 12:23:00 13 4.320 51.595 12:24:00 14 4.305 51.610 12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614 12:27:00 17 4.285 51.630	2.320 2.319 2.315 2.314 2.305 2.300 2.285 2.272 2.281
12:20:00 10 4.335 51.580 12:21:00 11 4.334 51.581 12:22:00 12 4.325 51.590 12:23:00 13 4.320 51.595 12:24:00 14 4.305 51.610 12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614	2.315 2.314 2.305 2.300 2.285 2.272
12:21:00 11 4.334 51.581 12:22:00 12 4.325 51.590 12:23:00 13 4.320 51.595 12:24:00 14 4.305 51.610 12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614	2.314 2.305 2.300 2.285 2.272
12:22:00 12 4.325 51.590 12:23:00 13 4.320 51.595 12:24:00 14 4.305 51.610 12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614	2.305 2.300 2.285 2.272
12:23:00 13 4.320 51.595 12:24:00 14 4.305 51.610 12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614	2.300 2.285 2.272
12:24:00 14 4.305 51.610 12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614	2.285 2.272
12:25:00 15 4.292 51.623 12:26:00 16 4.301 51.614	2.272
12:26:00 16 4.301 51.614	
	2.281
10,07,00 17 4,005 51,000	
12:27:00 17 4.285 51.630	2.265
12:28:00 18 4.280 51.635	2.260
12:29:00 19 4.255 51.660	2.235
12:30:00 20 4.234 51.681	2.214
12:32:00 22 4.160 51.755	2.140
12:34:00 24 4.080 51.835	2.060
12:36:00 26 4.005 51.910	1.985
12:38:00 28 3.946 51.969	1.926
12:40:00 30 3.880 52.035	1.860
12:42:00 32 3.815 52.100	1.795
12:44:00 34 3.764 52.151	1.744
12:46:00 36 3.714 52.201	1.694
12:48:00 38 3.671 52.244	1.651
12:50:00 40 3.632 52.283	1.612
12:55:00 45 3.542 52.373	1.522
13:00:00 50 3.466 52.449	1.446
13:05:00 55 3.402 52.513	1.382
13:10:00 60 3.351 52.564	1.331
13:20:00 70 3.264 52.651	1.244

Project: Forth Road Crossing	Test:	Constant rate test	Abstraction borehole:	CSRO10	
Date: 30/05/2012	Weather:	Overcast, chilly, very fine drizzle at times but mostly dry	Monitored borehole:	Obs 1 (CSRC	012)
			Datum:	Top of BH ca	using
			Datum elevation:	56.073	mAOD

	Manually				
	Elapsed	dipped water level	Water level	Drawdown	
Time	time (mins)	(mbdat)	(mAOD)	(m)	
09:00:00	0	2.262	53.811	0.000	
09:00:30	0.5	2.275	53.798	0.013	
09:01:00	1	0.400	50.040	0.100	
09:01:30	1.5	2.430	53.643 53.593	0.168	
09:02:00	2.5	2.480 2.510	53.593	0.218	
09:02:00	3	2.550	53.523	0.288	
09:03:30	3.5	2.590	53.483	0.328	
09:04:00	4	2.630	53.443	0.368	
09:04:30	4.5	2.675	53.398	0.413	
09:05:00	5	2.700	53.373	0.438	
09:05:30	5.5	2.730	53.343	0.468	
09:06:00 09:06:30	6.5	2.770 2.790	53.303 53.283	0.508	
09:07:00	0.3	2.823	53.250	0.520	
09:07:30	7.5	2.845	53.228	0.583	
09:08:00	8	2.875	53.198	0.613	
09:08:30	8.5	2.905	53.168	0.643	
09:09:00	9	2.922	53.151	0.660	
09:09:30	9.5	2.942	53.131	0.680	
09:10:00	10	2.967	53.106	0.705	
09:11:00	11	3.014 3.055	53.059 53.018	0.752	
09:12:00	12	3.055	52.982	0.793	
09:14:00	14	3.128	52.945	0.866	
09:15:00	15	3.171	52.902	0.909	
09:16:00	16	3.206	52.867	0.944	
09:17:00	17	3.240	52.833	0.978	
09:18:00	18	3.275	52.798	1.013	
09:19:00	19	3.303 3.340	52.770 52.733	1.041	
09:22:00	20	3.402	52.671	1.140	
09:24:00	24	3.465	52.608	1.203	
09:26:00	26	3.530	52.543	1.268	
09:28:00	28	3.590	52.483	1.328	
09:30:00	30	3.653	52.420	1.391	
09:32:00	32	0 700	50.000	1 501	
09:34:00 09:36:00	34	3.783 3.840	52.290 52.233	1.521 1.578	
09:38:00	38	3.840	52.233	1.628	
09:40:00	40	3.935	52.138	1.673	
09:45:00	45	4.052	52.021	1.790	
09:50:00	50	4.129	51.944	1.867	
09:55:00	55	4.166	51.907	1.904	
10:00:00	60	4.198	51.875	1.936	
10:10:00	70 80	4.235	51.838 51.775	1.973	
10:20:00	90	4.298 4.370	51.775	2.036 2.108	
10:40:00	100	4.435	51.638	2.173	
10:50:00	110	4.496	51.577	2.234	
11:00:00	120	4.545	51.528	2.283	
11:20:00	140	4.651	51.422	2.389	
11:40:00	160	4.776	51.297	2.514	
12:00:00	180	4.905 4.995	51.168	2.643	
12:05:00 12:10:00	185 190	4.995	51.078 51.078	2.733 2.733	
12:10:00	0	4.99	51.08	2.73	**s
12:10:30	0.5	4.99	51.08	2.73	
12:11:00	1	4.98	51.10	2.71	
12:11:30	1.5	4.96	51.11	2.70	
12:12:00	2	4.94	51.13	2.68	
12:12:30	2.5	4.93	51.15	2.66	
12:13:00	3	4.92	51.15	2.66	
12:13:30 12:14:00	3.5	4.89	51.18 51.19	2.63 2.62	
12:14:30	4.5	4.86	51.13	2.60	
12:15:00	5	4.83	51.24	2.57	
12:15:30	5.5	4.81	51.26	2.55	
12:16:00	6	4.78	51.29	2.52	
12:16:30	6.5	4.76	51.31	2.50	
12:17:00	7	4.74	51.33	2.48	
12:17:30	7.5	4.72	51.36	2.45 2.43	
12:18:00 12:18:30	8.5	4.69	51.38 51.40	2.43	
12:19:00	9	4.64	51.43	2.38	
12:19:30	9.5	4.62	51.46	2.35	
12:20:00	10	4.59	51.48	2.33	

Start of	recovery	
-		

12:21:00	11	4.54	51.53	2.28
12:22:00	12	4.49	51.59	2.22
12:23:00	13	4.45	51.62	2.19
12:24:00	14	4.42	51.66	2.15
12:25:00	15	4.38	51.69	2.12
12:26:00	16	4.35	51.72	2.09
12:27:00	17	4.33	51.74	2.07
12:28:00	18	4.31	51.77	2.04
12:29:00	19	4.27	51.80	2.01
12:30:00	20	4.24	51.83	1.98
12:32:00	22	4.15	51.92	1.89
12:34:00	24	4.06	52.01	1.80
12:36:00	26	4.00	52.07	1.74
12:38:00	28	3.94	52.13	1.68
12:40:00	30	3.88	52.20	1.61
12:42:00	32	3.82	52.25	1.56
12:44:00	34	3.76	52.31	1.50
12:46:00	36	3.71	52.36	1.45
12:48:00	38	3.66	52.41	1.40
12:50:00	40	3.63	52.44	1.37
12:55:00	45	3.54	52.54	1.27
13:00:00	50	3.45	52.62	1.19
13:05:00	55	3.40	52.67	1.14
13:10:00	60	3.36	52.71	1.10
13:20:00	70	3.28	52.80	1.01