A96 Dualling Hardmuir to Fochabers

DMRB Stage 2 Scheme Assessment Report
Volume 3
Part 4 – Traffic and Economic Assessment

A96PHF-MMS-GEN-00000-RP-Z-00025

Revision Record

<table>
<thead>
<tr>
<th>Ver No</th>
<th>Date</th>
<th>Originator</th>
<th>Checker</th>
<th>Approver</th>
<th>Status</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Dec 2018</td>
<td>Various</td>
<td>Various</td>
<td>JMH</td>
<td>A2</td>
<td>Approved for Stage Complete</td>
</tr>
</tbody>
</table>

This document has been prepared on behalf of Transport Scotland by Mott MacDonald Sweco JV for A96 Dualling Hardmuir to Fochabers. It is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose. Mott MacDonald Sweco JV accepts no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from Transport Scotland.

Prepared for:
Transport Scotland
Buchanan House, 58 Port Dundas Road
Glasgow, G4 0HF

Prepared by:
Mott MacDonald Sweco JV
2nd Floor Quay 2
139 Fountainbridge
Edinburgh, EH3 9QG
Contents

<table>
<thead>
<tr>
<th>Volume 1 – The Scheme and Engineering Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 2 - Environmental Assessment</td>
</tr>
<tr>
<td>Volume 3 - Traffic and Economic Assessment, Assessment Summary and Preferred Options</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Part 4: Traffic and Economic Assessment</td>
</tr>
</tbody>
</table>

22. Modelling

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 Introduction</td>
<td>22-1</td>
</tr>
<tr>
<td>22.2 A96 Corridor Road Assignment Model (A96 CRAM)</td>
<td>22-1</td>
</tr>
<tr>
<td>22.3 Zoning System</td>
<td>22-3</td>
</tr>
<tr>
<td>22.4 User Classes</td>
<td>22-3</td>
</tr>
<tr>
<td>22.5 Time Periods</td>
<td>22-3</td>
</tr>
<tr>
<td>22.6 Future Year Forecasting</td>
<td>22-4</td>
</tr>
<tr>
<td>22.7 Do Minimum Network</td>
<td>22-4</td>
</tr>
<tr>
<td>22.8 Do Something Network</td>
<td>22-6</td>
</tr>
<tr>
<td>22.9 Summary</td>
<td>22-6</td>
</tr>
</tbody>
</table>

23. Effects of Route Options

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>23-1</td>
</tr>
<tr>
<td>23.2 Hardmuir to Hillhead Options</td>
<td>23-1</td>
</tr>
<tr>
<td>23.3 Hillhead to Lhanbryde Options</td>
<td>23-3</td>
</tr>
<tr>
<td>23.4 Lhanbryde to East of Fochabers Options</td>
<td>23-5</td>
</tr>
<tr>
<td>23.5 Summary</td>
<td>23-6</td>
</tr>
</tbody>
</table>

24. Economic Performance of Route Options

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>24-1</td>
</tr>
<tr>
<td>24.2 Methodology</td>
<td>24-1</td>
</tr>
<tr>
<td>24.3 Scheme Cost Estimates</td>
<td>24-2</td>
</tr>
<tr>
<td>24.4 Hardmuir to Hillhead Economic Assessment</td>
<td>24-3</td>
</tr>
<tr>
<td>24.5 Hillhead to Lhanbryde Economic Assessment</td>
<td>24-3</td>
</tr>
<tr>
<td>24.6 Lhanbryde to East of Fochabers Economic Assessment</td>
<td>24-4</td>
</tr>
<tr>
<td>24.7 Summary</td>
<td>24-5</td>
</tr>
</tbody>
</table>
Part 5: Assessment Summary and Preferred Option Recommendation

Volume 4 - Appendices

Volume 5 - Engineering, Environmental and Traffic Figures
22. Modelling

22.1 Introduction

22.1.1. The traffic and economic assessment has been undertaken using the A96 Corridor Road Assignment Model (A96 CRAM). The A96 CRAM is a highway model that is used in conjunction with the national transport and land use models, Transport Model for Scotland (TMfS14) and Transport/Economic/Land-use Model of Scotland (TELMoS). The national models inform forecasts of changes in land use and travel demand and provide responses in relation to variable demand and mode choice. Outputs from TMfS/TELMoS are incorporated into the A96 CRAM model which has a finer level of zonal detail for predicting road traffic impacts arising from road network changes. The A96 CRAM has a base model year of 2012 and forecast model years used in the assessment are 2030, 2037 and 2045.

22.1.2. The A96 CRAM has been used to compare the options in terms of performance indicators such as changes to traffic flows, speeds, journey times and travel distances. These outputs were input to Transport Users Benefit Appraisal (TUBA, v1.9.11) software to identify the economic benefits of each option compared to the Do Minimum scenario. The model outputs were also input into Cost and Benefit to Accidents – Light Touch (COBALT) software to identify the predicted impact scheme options would have on accidents in the study area. The impact on accidents is monetised and included in the economic assessment. Output from the A96 CRAM was also used in the environmental appraisal of options as presented in Volume 2 of this report.

22.1.3. This chapter of the report describes key aspects of the transport model. Chapter 23 (Effects of Options) summarises the predicted traffic effects of the options considered. The economic performance of the various options is presented in Chapter 24 (Economic Performance of Options).

22.2 A96 Corridor Road Assignment Model (A96 CRAM)

22.2.1. The A96 CRAM represents the A96 corridor between the Raigmore Interchange in Inverness and Haudagain Roundabout in Aberdeen. The version of the model used in this assessment is A96 CRAM version 1.3, as issued by Transport Scotland’s A96 Lead Traffic Economic Advisor (LTEA) in May 2018.

22.2.2. TMfS14 was used by the LTEA to determine the area of influence of the proposed dual carriageway between Aberdeen and Inverness; this defined the fully modelled area, as shown in Figure 22.1.
22.2.3. The calibration and validation of the A96 CRAM 2012 base year model was completed in 2015 by Transport Scotland’s LTEA consultants AECOM. An Assignment Model Validation Report (AMVR) was provided to Transport Scotland in November 2015 (and updated in January 2018) which documents the processes used to develop the modelled networks and matrices, the methods of calibration employed and the calibration and validation of the model.

22.2.4. A96 CRAM has been developed to provide the following key functions:

- Road traffic forecasting: producing road traffic flows for the Do Minimum scenario and the various A96 Dualling scheme options;
- Journey times: producing journey times for the Do Minimum scenario and the various scheme options;
- Option Testing: producing a consistent set of outputs for the various options tested;
- Noise and Air quality assessment: providing outputs from the model to enable the noise and air quality assessments to be undertaken; and
- Economic Assessment: providing outputs from the model to enable the economic assessment to be undertaken using the UK Department for Transport’s (DfT) TUBA and assessment of accident savings using COBALT.
22.3 Zoning System

22.3.1. The zoning system for A96 CRAM has been derived from zoning used in TMfS14. There has been disaggregation of the TMfS14 zones to ensure that the model is of sufficient detail to assess the effects of the A96 schemes. This disaggregation has been based on the 2011 Scotland Census Data Zones and Output Areas and compatibility with the TMfS14 zoning system. Model zones have been defined according to land use, where possible, with clearly defined points of access onto the network. The A96 CRAM incorporates a total of 655 zones.

22.4 User Classes

22.4.1. Road based travel demand is assigned to the highway network using a volume averaged equilibrium assignment, in passenger car units (PCUs), for each of the following five vehicle user classes (UC):
- UC1 Cars (employers’ business purpose);
- UC2 Cars (travel to work purpose);
- UC3 Cars (other purpose);
- UC4 Light Goods Vehicles (LGV); and
- UC5 Heavy Goods Vehicles (HGV).

22.4.2. In addition, scheduled bus routes along the corridor have been modelled as fixed flows.

22.5 Time Periods

22.5.1. The A96 CRAM represents a typical Monday to Thursday weekday in 2012. The modelled time periods are:
- AM peak hour between 08:00 and 09:00;
- Inter peak hour being the average of the six-hour period from 10:00 to 16:00; and
- PM peak hour between 17:00 and 18:00.

22.5.2. The derived Annual Average Daily Traffic (AADT) factors are:
- AM peak hour (08:00-09:00) to AM peak period (07:00-10:00) 2.61
- Inter peak hour to Inter peak period (10:00-16:00) 6.00
- PM peak hour (17:00-18:00) to PM peak period (16:00-19:00) 2.70
- 12 hour weekday to 24 hour AADT factor\(^1\) 1.10

22.5.3. As A96 CRAM applies demands in terms of PCUs, conversion factors based on 2.35 PCUs/veh and 2.5 PCUs/veh have been applied to UC5 and Buses respectively.

\(^1\) The 12 to 24 hour AADT factor uses available data over 365 days to convert from the neutral modelled period to an annual average including weekends.
22.6 Future Year Forecasting

22.6.1. A three-tiered model forecasting approach has been adopted to take advantage of pre-existing national modelling tools (TELMoS and TMfS) and a local, A96 specific, assignment model (A96 CRAM). Essentially, this approach captures the traffic demand forecasting capabilities of TELMoS and TMfS but uses A96 CRAM to provide a greater degree of geographic disaggregation, and hence improved resolution, in order to generate more precise forecast of road traffic impacts along the A96 corridor.

22.6.2. TMfS, in conjunction with TELMoS, provides forecasts of changes in land use and travel demand over time. The main purpose of TMfS in the context of the A96 Dualling assessment is to provide strategic outputs for use in the A96 Dualling Programme level analysis and to provide travel demand forecasts that can be fed down to lower tier models. A96 CRAM provides a finer level detail of the road traffic impacts arising from the A96 Dualling Programme.

22.7 Do Minimum Network

22.7.1. The 'Do Minimum' provides a description of the scenario that would exist if the A96 Dualling programme proposals were not implemented but all other committed land use and transport schemes were completed. WebTAG\(^2\) and Scottish Transport Appraisal Guidance (STAG) guidance recommends inclusion of only those schemes or developments in the core scenario that are either ‘near certain’ or ‘more than likely’. Section 2.3 of STAG states ‘The options generated must be appraised against a Do Minimum option that includes transport improvement commitments that have policy and funding approval and from which it would be difficult to withdraw’.

22.7.2. For economic, environmental and design assessment of schemes forming part of the A96 Dualling Programme, the Do Minimum A96 CRAM network is assumed to be as it was in 2012 (the base model year) plus a set of infrastructure projects agreed with Transport Scotland, Highland Council, Moray Council, Aberdeenshire Council, and Aberdeen City Council, as shown in Table 22.1 below.

\(^2\)Online guidance documents for transport appraisal - Department of Transport May 2018
Table 22.1: Do Minimum Road Schemes

<table>
<thead>
<tr>
<th>Road Scheme</th>
<th>Year of Inclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queensferry Crossing (Forth Replacement Crossing)</td>
<td>2017</td>
</tr>
<tr>
<td>M8 / M73 / M74 Motorway Improvements</td>
<td>2017</td>
</tr>
<tr>
<td>A96 Inveramsay Bridge</td>
<td>2017</td>
</tr>
<tr>
<td>A68 Pathhead to Tynehead Junction</td>
<td>2017</td>
</tr>
<tr>
<td>A702 Candymill Bend and Edmonstone Brae</td>
<td>2017</td>
</tr>
<tr>
<td>A95 Lackghie</td>
<td>2017</td>
</tr>
<tr>
<td>A75 Dunragit Bypass Scheme</td>
<td>2017</td>
</tr>
<tr>
<td>A75 Hardgrove to Kinmount Scheme</td>
<td>2017</td>
</tr>
<tr>
<td>A82 Crianlarich Bypass</td>
<td>2017</td>
</tr>
<tr>
<td>A82 Pulpit Rock Scheme</td>
<td>2017</td>
</tr>
<tr>
<td>Glasgow East End Regeneration Route Phase 3 (Clyde Gateway Route)</td>
<td>2017</td>
</tr>
<tr>
<td>Portstown Link Road</td>
<td>2017</td>
</tr>
<tr>
<td>Third Don Crossing</td>
<td>2017</td>
</tr>
<tr>
<td>Soutra South to Oxton</td>
<td>2017</td>
</tr>
<tr>
<td>Dundee Waterfront</td>
<td>2017</td>
</tr>
<tr>
<td>Dyce Drive Link Road (part of Dyce Park and Ride)</td>
<td>2017</td>
</tr>
<tr>
<td>Aberdeen Western Peripheral Route (AWPR) / Balmedie to Tippery</td>
<td>2018</td>
</tr>
<tr>
<td>Speed limit changes on A96 at Pitmachie</td>
<td>2022</td>
</tr>
<tr>
<td>A90/A96 Haudagain Roundabout Improvement</td>
<td>2022</td>
</tr>
<tr>
<td>Inverness West Link (both Stage 1 and Stage 2)</td>
<td>2022</td>
</tr>
<tr>
<td>M8 J29a Bishopton Junction</td>
<td>2022</td>
</tr>
<tr>
<td>M9 Winchburgh Junction</td>
<td>2027</td>
</tr>
</tbody>
</table>
22.8 Do Something Network

22.8.1. Two Do Something scenarios have been created based on the differing requirements for different assessments:

- The Do Something ‘Economic’ scenario involves model coding representing dualling of the A96 between Hardmuir and Fochabers only. The scheme is modelled to tie-in to the existing A96 at either end. Demands are assumed to be fixed between the Do Minimum and the Do Something Economic’; there is assumed to be no induced traffic as a result of the scheme. This approach ensures that benefits in the economic assessment are directly attributable to the dualling of the Hardmuir to Fochabers section only.

- The Do Something ‘Environment & Design’ scenario involves model coding representing dualling of the A96 between the full programme route from Aberdeen to Inverness. Forecast demands for Do Something ‘Environment & Design’ allow for induced traffic as a result of the full dualling scheme based on TMfS/TELMoS responses to faster journey times and increased capacity. This provides a maximum impact scenario in terms of traffic flows for environmental and design assessment.

Table 22.2: Schemes included in the Do Minimum and Do Something Scenarios

<table>
<thead>
<tr>
<th>A96 Schemes</th>
<th>A96 Inverness to Nairn (including Nairn Bypass)</th>
<th>A96 Hardmuir to Fochabers (Western Section)</th>
<th>A96 Central Section</th>
<th>A96 Eastern Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Minimum</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Do Something ‘Economic’</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Do Something ‘Environment & Design’</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

22.9 Summary

22.9.1. The A96 CRAM model has been used to provide existing and future forecast traffic flows. Details of the model development, calibration and validation are set out in the Assignment Model Validation Report, January 2018. Network assumptions have been presented in relation to the Do Minimum scenario, including committed road infrastructure projects.

22.9.2. Two separate Do Something scenarios for economic assessment and environmental and design assessments have been developed. The approach to traffic forecasting has been presented based on use of TMfS / TELMoS and A96 CRAM to derive traffic flows in forecast years of 2030, 2037 and 2045.
23. Effects of Route Options

23.1 Introduction

23.1.1. For the purpose of traffic appraisal of the sections described in Volume 1, Chapter 3 (Development of Route Options), assumptions have been made in modelling connections to adjacent sections of the A96 Dualling Hardmuir to Fochabers Scheme. The following combinations identified in Table 23.1 below have been chosen in order to generate the highest traffic flows in the particular section being appraised (it is particularly relevant to use the highest available predictions in noise and air quality assessments).

Table 23.1: Assumed Combinations for Traffic Testing

<table>
<thead>
<tr>
<th>Option Being Appraised</th>
<th>Hardmuir to Hillhead Section</th>
<th>Hillhead to Lhanbryde Section</th>
<th>Lhanbryde to East of Fochabers Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead North</td>
<td>North Option</td>
<td>South Option</td>
<td>South Option</td>
</tr>
<tr>
<td>Hardmuir to Hillhead South</td>
<td>South Option</td>
<td>South Option</td>
<td></td>
</tr>
<tr>
<td>Hillhead to Lhanbryde North</td>
<td>South Option</td>
<td>North Option</td>
<td>North Option</td>
</tr>
<tr>
<td>Hillhead to Lhanbryde South</td>
<td>South Option</td>
<td>South Option</td>
<td></td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers North</td>
<td>North Option</td>
<td>North Option</td>
<td>North Option</td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers South</td>
<td>North Option</td>
<td>North Option</td>
<td>South Option</td>
</tr>
</tbody>
</table>

23.2 Hardmuir to Hillhead Options

23.2.1. Figure 23.1 (Volume 5) presents the proposed alignments for the two options in this geographical section and two way annual average daily traffic (AADT) flows at key locations. The scheme junctions are summarised in Table 23.2 below.
Table 23.2: Hardmuir to Hillhead Junction Strategy

<table>
<thead>
<tr>
<th>Option</th>
<th>No. of Junctions</th>
<th>Junction Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead North Option 2</td>
<td>2</td>
<td>Existing A96 West of Forres (Forres West)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing A96 East of Forres (Forres East)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardmuir to Hillhead South Option 3</td>
<td>3</td>
<td>Existing A96 West of Forres (Forres West)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A940 (Forres South)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing A96 East of Forres (Forres East)</td>
</tr>
</tbody>
</table>

23.2.2. At opening year 2030 between Forres West and Forres East junctions, the options attract high traffic volumes of approximately 17,600 (North Option) and 18,400-19,200 (South Option) vehicles per day, consistent with a dual carriageway provision\(^3\). There are significant reductions on the existing A96 for both options, at key locations such as Forres railway station which reduces from 14,100 to 3,800 and Brodie village 16,200 to 1,300 vehicles per day. There are no significant changes in Forres High Street, with traffic flows being at 3,400 vehicles per day for both options. The A940 junction changes the traffic patterns in the area with reductions on the A940 within Forres from 4,900 to 3,400 vehicles per day.

23.2.3. In addition to traffic flows, journey times have also been examined in both directions for both options. These are presented in Tables 23.3, 23.4 and 23.5 below.

Table 23.3: Hardmuir to Hillhead Journey Times (AM Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead</td>
<td>14:10</td>
<td>09:10</td>
<td>10:00</td>
</tr>
<tr>
<td>Hillhead to Hardmuir</td>
<td>12:50</td>
<td>09:00</td>
<td>10:20</td>
</tr>
</tbody>
</table>

Table 23.4: Hardmuir to Hillhead Journey Times (Inter Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead</td>
<td>12:30</td>
<td>09:00</td>
<td>09:50</td>
</tr>
<tr>
<td>Hillhead to Hardmuir</td>
<td>13:00</td>
<td>09:00</td>
<td>10:30</td>
</tr>
</tbody>
</table>

\(^3\) DMRB TA46/97 provides an indication of the range of opening year traffic flows over which a particular carriageway standard is likely to be economically justified. For a two-lane dual carriageway this is 11,000 to 39,000 vehicles per day.
23.2.4. In the AM peak both options are predicted to save between approximately two and five minutes in each direction when compared to the Do Minimum scenario. The North Option is approximately one minute quicker than the South Option, owing to the shorter, more direct route, taken around Forres. Similar journey time savings are evident is the PM peak with a consistent finding that the North Option performs better.

23.3 Hillhead to Lhanbryde Options

23.3.1. Figure 23.2 (Volume 5) presents the alignments for the two options in this geographical section and traffic flows at key locations. The junction locations are summarised in Table 23.6 below.

Table 23.6: Hillhead to Lhanbryde Junction Strategy

<table>
<thead>
<tr>
<th>Option</th>
<th>No. of Junctions</th>
<th>Junction Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to Lhanbryde North Option</td>
<td>3</td>
<td>Existing A96 near Newton (Elgin West)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A941 north of Elgin (Elgin North)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing A96 East of Elgin (Elgin East)</td>
</tr>
<tr>
<td>Hillhead to Lhanbryde South Option</td>
<td>3</td>
<td>South-west of Elgin with link to existing A96 (Elgin West)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A941 south of Elgin (Elgin South)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South of Lhanbryde with link to existing A96 (Elgin East)</td>
</tr>
</tbody>
</table>

23.3.2. At opening year 2030 between Elgin West and Elgin East junctions, the options attract high traffic volumes of approximately 15,400 (North Option) and 13,600 – 16,000 (South Option) vehicles per day, consistent with a dual carriageway provision\(^4\). Traffic flows in Elgin on the existing A96 are relatively consistent between the two options at key locations, such as at Alexandra Road, west of the A941, from 20,800 to 17,300 (North Option) and 17,100 (South Option) vehicles per day. At Alves the daily traffic flow reduces from 18,700 to 2,700 (North Option) vehicles per day.\(^4\)

\(^4\) DMRB TA46/97 provides an indication of the range of opening year traffic flows over which a particular carriageway standard is likely to be economically justified. For a two-lane dual carriageway this is 11,000 to 39,000 vehicles per day.
Option) and 3,600 (South Option) vehicles per day. In each case the central junctions change the traffic patterns in the area. The North Option attracts more traffic from the Lossiemouth area with traffic flows raising from 9,600 to 11,600 vehicles per day on the A941. For the South Option, the central junction results in minor changes in traffic patterns in the area with the A941 traffic flows reducing from 5,400 to 5,000 vehicles per day.

23.3.3. Journey times have also been examined in both directions for each option for the three modelled time periods. These are presented in Tables 23.7, 23.8 and 23.9 below.

Table 23.7: Hillhead to Lhanbryde Journey Times (AM Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to Lhanbryde</td>
<td>25:30</td>
<td>13:30</td>
<td>12:00</td>
</tr>
<tr>
<td>Lhanbryde to Hillhead</td>
<td>24:40</td>
<td>13:20</td>
<td>11:50</td>
</tr>
</tbody>
</table>

Table 23.8: Hillhead to Lhanbryde Journey Times (Inter Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to Lhanbryde</td>
<td>22:00</td>
<td>13:20</td>
<td>11:40</td>
</tr>
<tr>
<td>Lhanbryde to Hillhead</td>
<td>21:50</td>
<td>13:20</td>
<td>11:50</td>
</tr>
</tbody>
</table>

Table 23.89 Hillhead to Lhanbryde Journey Times (PM Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to Lhanbryde</td>
<td>24:50</td>
<td>13:30</td>
<td>11:50</td>
</tr>
<tr>
<td>Lhanbryde to Hillhead</td>
<td>27:00</td>
<td>13:50</td>
<td>12:20</td>
</tr>
</tbody>
</table>

23.3.4. In the AM peak both options are predicted to save between approximately 11 to 14 minutes in each direction when compared to the Do Minimum scenario. The South Option is approximately one and a half minutes quicker than the North Option, owing to the shorter, more direct route taken around Elgin. Similar journey time savings are evident is the PM peak with a consistent finding that the South Option performs better.
23.4 Lhanbryde to East of Fochabers Options

23.4.1. Figure 23.3 (Volume 5) presents the proposed alignments for the two options in this geographical section and AADT figures at key locations. The junction locations are summarised in Table 23.10 below.

Table 23.10: Lhanbryde to East of Fochabers Junction Strategy

<table>
<thead>
<tr>
<th>Option</th>
<th>No. of Junctions</th>
<th>Junction Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lhanbryde to East of Fochabers</td>
<td>2</td>
<td>B9105 south of Mosstodloch (Mosstodloch)</td>
</tr>
<tr>
<td>North Option</td>
<td></td>
<td>Existing A96 / A98 junction at Fochabers (Fochabers)</td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers</td>
<td>2</td>
<td>Southwest of Mosstodloch with link road to existing A96</td>
</tr>
<tr>
<td>South Option</td>
<td></td>
<td>(Mosstodloch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing A96 south of Fochabers (Fochabers)</td>
</tr>
</tbody>
</table>

23.4.2. At opening year 2030 between Mosstodloch and Fochabers junctions, the options attract high traffic volumes of approximately 23,200 (North Option) and 21,700 (South Option) vehicles per day, consistent with a dual carriageway provision. There are significant reductions on the existing A96 for both options, such as at the River Spey bridge which reduces from 19,100 to 1,600 (North Option) and 3,200 (South Option) vehicles per day. Due to the online section at Fochabers for the North Option, this results in a change in the traffic flow on Fochabers High Street from 700 (Do Minimum) to 1,100 (North Option) and 600 (South Option) vehicles per day. Traffic on the A98 remains consistent between the options at around 10,000 vehicles per day.

23.4.3. Journey times have also been examined in both directions for both options, for the three modelled time periods. These are presented in Tables 23.11, 23.12 and 23.13.

Table 23.11: Lhanbryde to East of Fochabers Journey Times (AM Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to East of Fochabers</td>
<td>10:20</td>
<td>06:20</td>
<td>06:20</td>
</tr>
<tr>
<td>East of Fochabers to Hillhead</td>
<td>11:20</td>
<td>06:20</td>
<td>06:20</td>
</tr>
</tbody>
</table>

DMRB TA46/97 provides an indication of the range of opening year traffic flows over which a particular carriageway standard is likely to be economically justified. For a two-lane dual carriageway this is 11,000 to 39,000 vehicles per day.
Table 23.12: Lhanbryde to East of Fochabers Journey Times (Inter Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to East of Fochabers</td>
<td>09:40</td>
<td>06:20</td>
<td>06:10</td>
</tr>
<tr>
<td>East of Fochabers to Hillhead</td>
<td>10:10</td>
<td>06:20</td>
<td>06:10</td>
</tr>
</tbody>
</table>

Table 23.13: Lhanbryde to East of Fochabers Journey Times (PM Peak)

<table>
<thead>
<tr>
<th>Option</th>
<th>DM 2045 Existing A96 (mm:ss)</th>
<th>North Option 2045 New A96 (mm:ss)</th>
<th>South Option 2045 New A96 (mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillhead to East of Fochabers</td>
<td>11:00</td>
<td>06:30</td>
<td>06:20</td>
</tr>
<tr>
<td>East of Fochabers to Hillhead</td>
<td>12:00</td>
<td>06:30</td>
<td>06:30</td>
</tr>
</tbody>
</table>

23.4.4. In the AM peak both options are predicted to save between approximately four to five minutes in each direction, when compared to the Do Minimum scenario. There is no journey time savings difference between the North and South Option. Similar journey time savings are evident in the PM peak.

23.5 Summary

23.5.1. This chapter has set out the forecast traffic flows and journey times for each of the three sections appraised. A summary of the main traffic flows on the proposed A96 and average journey time savings can be seen in Table 23.14.

Table 23.14: Summary of Traffic Flows and Journey Times Saved

<table>
<thead>
<tr>
<th>2030 Traffic Flows on Proposed A96 (vehicles per day)</th>
<th>Average Journey Time Saved (AM Peak) (mm:ss)</th>
<th>North Option</th>
<th>South Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,600</td>
<td>04:25</td>
<td>03:20</td>
<td></td>
</tr>
<tr>
<td>18,400-19,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillhead to Lhanbryde</td>
<td></td>
<td>11:40</td>
<td>13:10</td>
</tr>
<tr>
<td>15,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,000-13,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers</td>
<td></td>
<td>04:30</td>
<td>04:30</td>
</tr>
<tr>
<td>23,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21,700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.5.2. Both the North and South Option are expected to create a significant transfer of traffic from the existing A96 in Forres. In the AM peak both options are predicted to save between approximately two to five minutes in each direction, when compared to the Do Minimum scenario.
scenario. The North Option is approximately one minute quicker than the South Option, owing to the shorter, more direct route taken around Forres.

Hillhead to Lhanbryde

23.5.3. A large transfer of traffic occurs from the existing A96 in both the North and South Options. Within Elgin, the reduction in traffic is consistent between the two options as trips continue to use local roads for origins and destinations within the town. In the AM peak both options are predicted to save between approximately 11 to 14 minutes in each direction when compared to the Do Minimum scenario. The South Option is approximately one and a half minutes quicker than the North Option, owing to the shorter, more direct route taken around Elgin. There is less variability in journey times in both directions across the time periods modelled in comparison to the Do Minimum, which is indicative of bypassing an urban centre using a higher standard strategic road.

Lhanbryde to East of Fochabers

23.5.4. The two options attract high traffic volumes. In the AM peak both options are predicted to save between approximately four to five minutes in each direction, when compared to the Do Minimum scenario. There is no difference in journey time savings between the North and South Options.
24. Economic Performance of Route Options

24.1 Introduction

24.1.1. The economic assessment of the sections described in Volume 1, Chapter 3 (Development of Route Options) has been carried out using Transport Users Benefit Appraisal (TUBA) version 1.9.11 developed by the Department for Transport (DfT). In addition the impact of options on accident potential has been assessed using the DfT’s Cost and Benefit to Accidents – Light Touch (COBALT) 2013.2 software.

24.1.2. Assumptions have been made in modelling combination of options to assess a particular section. The following combinations identified in Table 24.1 below have been chosen in order to generate the highest traffic flows.

Table 24.1: Assumed combinations for economic testing

<table>
<thead>
<tr>
<th>Option Being Appraised</th>
<th>Hardmuir to Hillhead Section</th>
<th>Hillhead to Lhanbryde Section</th>
<th>Lhanbryde to East of Fochabers Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead North</td>
<td>North Option</td>
<td>South Option</td>
<td>South Option</td>
</tr>
<tr>
<td>Hardmuir to Hillhead South</td>
<td>South Option</td>
<td>South Option</td>
<td>South Option</td>
</tr>
<tr>
<td>Hillhead to Lhanbryde North</td>
<td>South Option</td>
<td>North Option</td>
<td>North Option</td>
</tr>
<tr>
<td>Hillhead to Lhanbryde South</td>
<td>South Option</td>
<td>South Option</td>
<td>North Option</td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers North</td>
<td>North Option</td>
<td>North Option</td>
<td>North Option</td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers South</td>
<td>North Option</td>
<td>North Option</td>
<td>South Option</td>
</tr>
</tbody>
</table>

24.2 Methodology

24.2.1. TUBA undertakes a matrix-based (i.e. zone-to-zone) appraisal using trip, time and distance matrices from a transport model, in this case: A96 Corridor Road Assignment Model (A96 CRAM). TUBA calculates the user benefits in time, fuel vehicle operating costs (VOC), non-fuel VOC and charge; operator and government revenues; and the scheme costs, discounted to the present value year.

24.2.2. Benefits due to changes in accident costs are calculated separately in COBALT. Inputs to COBALT are link-based, with each link being assigned a distance, type, speed limit and Annual Average Daily Traffic (AADT) flow. COBALT estimates the number of accidents in the Do Something and Do Minimum scenarios across a defined network for the appraisal period. This assessment has used the COBALT default UK national accident combined link and junction accident rates for each road type.
24.2.3. TUBA and COBALT allow a comparison between costs for Do Minimum and Do Something scenarios which provides an estimate of user and accident benefit in monetised terms over the appraisal period.

24.2.4. Economic appraisal has been undertaken based on the Do Something ‘Economic’ scenario, as described in Chapter 23 (Effects of Options). For the purposes of appraisal, this assumes the scheme ties in to the existing A96 at either end of the A96 Dualling Hardmuir to Fochabers scheme, only this section is dualled and that demands are fixed between Do Minimum and Do Something scenarios.

24.2.5. Scheme opening is assumed to be 2030, with transport model forecasts also prepared for 2037 and the 2045 design year (15 years after opening). The full appraisal period runs to 2089 in order to calculate the 60 year benefit stream.

24.3 Scheme Cost Estimates

24.3.1. The estimated costs of each of options is described in Volume 1, Chapter 3 (Development of Route Options), Section 3.6. For the purpose of the economic assessment, construction has been assumed to commence in 2027 and be completed in 2030. The construction spend profile for all options was assumed to be:
- 2027 – 30%
- 2028 – 34%
- 2029 – 33%
- 2030 – 3%

24.3.2. The scheme cost estimates are presented in Table 24.2 below.

<table>
<thead>
<tr>
<th>Cost of option</th>
<th>Cost of end-to-end scheme including assumed combinations (ref Table 24.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardmuir to Hillhead North</td>
<td>£279.6m</td>
</tr>
<tr>
<td>Hardmuir to Hillhead South</td>
<td>£263.8m</td>
</tr>
<tr>
<td>Hillhead to Lhanbryde North</td>
<td>£354.3m</td>
</tr>
<tr>
<td>Hillhead to Lhanbryde South</td>
<td>£329.6m</td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers North</td>
<td>£212.3m</td>
</tr>
<tr>
<td>Lhanbryde to East of Fochabers South</td>
<td>£250.5m</td>
</tr>
</tbody>
</table>

Note: All costs in the above table are in 2018 Q1 prices and exclude VAT
24.4 Hardmuir to Hillhead Economic Assessment

24.4.1. A comparison of transport economic efficiency (TEE) for Hardmuir to Hillhead options is set out in Table 24.3 below. This shows the North Option provides best value having Net Present Value (NPV) higher than the South Option by £22m.

<table>
<thead>
<tr>
<th></th>
<th>North Option including assumed combinations (ref Table 24.1)</th>
<th>South Option including assumed combinations (ref Table 24.1)</th>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Value of Benefits - TUBA</td>
<td>£446m</td>
<td>£418m</td>
<td>-</td>
</tr>
<tr>
<td>Accident Benefits - COBALT</td>
<td>£118m</td>
<td>£115m</td>
<td>-</td>
</tr>
<tr>
<td>Total Present Value Benefits (PVB)</td>
<td>£564m</td>
<td>£533m</td>
<td>North PVB greater by £31m</td>
</tr>
<tr>
<td>Present Value of Costs (PVC)</td>
<td>£482m</td>
<td>£473m</td>
<td>North PVC greater by £9m</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>£82m</td>
<td>£60m</td>
<td>North NPV greater by £22m</td>
</tr>
</tbody>
</table>

Note: 2010 values and prices, discounted to 2010 at 3.5% for first 30 years and 3% thereafter, market prices unit of account.

24.4.2. Table 24.4 below shows the estimated savings in casualties for the Hardmuir to Hillhead options. This shows the North Option saves more over the 60 year evaluation period.

<table>
<thead>
<tr>
<th></th>
<th>North Option including assumed combinations (ref Table 24.1)</th>
<th>South Option including assumed combinations (ref Table 24.1)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>46</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>Serious</td>
<td>420</td>
<td>411</td>
<td>9</td>
</tr>
<tr>
<td>Slight</td>
<td>3,058</td>
<td>2,936</td>
<td>123</td>
</tr>
</tbody>
</table>

24.5 Hillhead to Lhanbryde Economic Assessment

24.5.1. A comparison of TEE for the Hillhead to Lhanbryde options is set out in Table 24.5 below. This shows the South Option provides best value having an NPV higher than the North Option by £46m.
Table 24.5: TEE for Hillhead to Lhanbryde Options

<table>
<thead>
<tr>
<th></th>
<th>North Option including assumed combinations (ref Table 24.1)</th>
<th>South Option including assumed combinations (ref Table 24.1)</th>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Value of Benefits - TUBA</td>
<td>£407m</td>
<td>£434m</td>
<td>-</td>
</tr>
<tr>
<td>Accident Benefits - COBALT</td>
<td>£112m</td>
<td>£117m</td>
<td>-</td>
</tr>
<tr>
<td>Total Present Value Benefits (PVB)</td>
<td>£519m</td>
<td>£551m</td>
<td>South PVB greater by £32m</td>
</tr>
<tr>
<td>Present Value of Costs (PVC)</td>
<td>£466m</td>
<td>£452m</td>
<td>North PVC greater by £14m</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>£53m</td>
<td>£99m</td>
<td>South NPV greater by £46m</td>
</tr>
</tbody>
</table>

Note: above table refers to 2010 values and prices, discounted to 2010 at 3.5% for first 30 years and 3% thereafter, market prices unit of account.

24.5.2. Table 24.6 below shows estimated savings in casualties for the Hillhead to Lhanbryde options. This shows the South Option saves more accidents over the 60 year evaluation period.

Table 24.6: Casualty Savings for Hillhead to Lhanbryde Options

<table>
<thead>
<tr>
<th></th>
<th>North Option including assumed combinations (ref Table 24.1)</th>
<th>South Option including assumed combinations (ref Table 24.1)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>46</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>Serious</td>
<td>403</td>
<td>418</td>
<td>15</td>
</tr>
<tr>
<td>Slight</td>
<td>2,835</td>
<td>2,971</td>
<td>135</td>
</tr>
</tbody>
</table>

24.6 Lhanbryde to East of Fochabers Economic Assessment

24.6.1. The economic performance results of Lhanbryde to East Fochabers options are presented in Table 24.7 below. This shows the North and South Options have similar NPVs.
Table 24.7: TEE for Lhanbryde to East of Fochabers Options

<table>
<thead>
<tr>
<th></th>
<th>North Option including assumed combinations (ref Table 24.1)</th>
<th>South Option including assumed combinations (ref Table 24.1)</th>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Value of Benefits (TUBA)</td>
<td>£426m</td>
<td>£445m</td>
<td>-</td>
</tr>
<tr>
<td>Accident Benefits (COBALT)</td>
<td>£114m</td>
<td>£115m</td>
<td>-</td>
</tr>
<tr>
<td>Total Present Value Benefits (PVB)</td>
<td>£540m</td>
<td>£561m</td>
<td>South PVB greater by £21m</td>
</tr>
<tr>
<td>Present Value of Costs (PVC)</td>
<td>£475m</td>
<td>£496m</td>
<td>South PVC greater by £21m</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>£65m</td>
<td>£65m</td>
<td>NPV are similar</td>
</tr>
</tbody>
</table>

Note: above table refers to 2010 values and prices, discounted to 2010 at 3.5% for first 30 years and 3% thereafter, market prices unit of account.

24.6.2. Table 24.8 below shows estimated savings in casualties for the Lhanbryde to East of Fochabers options. This shows the South Option saves more accidents over the 60 year evaluation period.

Table 24.8: Casualty Savings for Lhanbryde to East of Fochabers Options

<table>
<thead>
<tr>
<th></th>
<th>North Option including assumed combinations (ref Table 24.1)</th>
<th>South Option including assumed combinations (ref Table 24.1)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>44</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>Serious</td>
<td>409</td>
<td>412</td>
<td>3</td>
</tr>
<tr>
<td>Slight</td>
<td>2,943</td>
<td>2,956</td>
<td>13</td>
</tr>
</tbody>
</table>

24.7 Summary

24.7.1. This chapter presents the methodology and assessment of the economic performance of shortlisted options for the A96 Dualling Hardmuir to Fochabers scheme.

24.7.2. The economic evaluation program TUBA has been used for the evaluation, as it is able to assess the economic effects of redistribution of trips due to journey cost changes resulting from the introduction of a road scheme. Traffic data for input to TUBA has been derived from the A96 CRAM. COBALT has been used to assess the impact each option has on accidents.
24.7.3. In this process end-to-end results are generated and it is the comparison of Net Present Values (NPVs) between North and South Options that is relevant in reporting favoured options.

- For the Hardmuir to Hillhead section, the North Option provides best value with the NPV exceeding that for the South Option by £22m.
- For the Hillhead to Lhanbryde section, the South Option provides best value with the NPV exceeding that for the North Option by £46m.
- For the Lhanbryde to East of Fochabers section, the North and South Options provide similar NPVs.
HARDMUIR TO FOCHABERS

© Crown copyright 2018

You may re-use this information (excluding logos and images) free of charge in any format or medium, under the terms of the Open Government Licence.
To view this licence, visit: www.nationalarchives.gov.uk/doc/open-government-licence or email: psi@nationalarchives.gsi.gov.uk

Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Further copies of this document are available, on request, in audio and visual formats. Any enquiries regarding this document/publication should be sent to us at:
info@transport.gov.scot

This document is also available on the Transport Scotland website: transport.gov.scot

Published by Transport Scotland December 2018.

transport.gov.scot/project/a96-hardmuir-fochabers