TECHNICAL APPENDIX 6.1: WATER QUALITY CALCULATIONS

8.1.1 Introduction

- 8.1.1.1 This appendix provides information on the calculations and outputs used to inform the water quality assessment associated with the operational phase of the proposed development, as reported in Chapter 6: Road Drainage and Water Environment in Volume 2. The indicative drainage layout is shown on Figure 6.4 (Drainage Layout) in Volume 4.
- 8.1.1.2 As part of the water quality assessment, routine runoff and accidental spillage risk to the Swine Burn (proposed to receive operational road drainage) was assessed using the Highways England Water Risk Assessment Tool (HEWRAT), in line with DMRB HD45/09 guidance¹.
- 8.1.1.3 An overview of the methodologies is provided in Section 8.1.2 of this appendix. Detailed information on methodology and calculations is available in DMRB HD45/09. Input parameters and calculation sheets for the routine runoff and accidental spillage risk assessments are provided in Sections 8.1.3 and 8.1.4 of this appendix, respectively.

8.1.2 Assessment Methodologies

Routine Runoff Assessment (Method A)

- 8.1.2.1 This Method estimates the magnitude of potential short term and longer-term impacts to water quality associated with discharge of operational road drainage. Calculated concentrations of specific elements are compared against freshwater pollutant thresholds and Environmental Quality Standards (EQS) to assess compliance with the Water Framework Directive (WFD). HEWRAT considers the following:
 - Short-term impacts in the form of runoff-specific thresholds (RST), which relate to the
 intermittent nature of road runoff (i.e. contaminants washed off the road surface in a
 rainfall event), over a typical exposure period of six hours (RST 6 hour) and for a worstcase scenario of 24 hours (RST 24 hour). Dissolved copper and dissolved zinc are used
 as indicators of the level of impact as they can result in acute toxic effects to aquatic life
 in certain concentrations.
 - Chronic impacts (i.e. impacts which can persist for weeks or months) associated with sediment-bound pollutants on aquatic ecology. Two standards are used for metal and polycyclic aromatic hydrocarbon (PAH) concentrations within sediment; Threshold Effects Levels (TELs) (i.e. the concentration below which toxic effects are very rare) and Probable Effects Levels (PELs) (i.e. the concentration above which toxic effects are observed on most occasions).
 - Longer-term in-river annual average concentrations for soluble pollutants (dissolved copper and dissolved zinc) which includes the contribution from road runoff. These concentrations are compared against published EQS for freshwaters to assess whether there is likely to be a long term impact on ecology.
- 8.1.2.2 HEWRAT uses a three-step tiered approach to assess the impacts of both soluble and sediment-bound pollutants. A 'Pass' or 'Fail' result is recorded depending on whether the risk is within or exceeds the thresholds indicated above. Where a Fail result is recorded for one or

¹ Highways Agency et al. (2009). Volume 11, Section 3, Part 10: Road Drainage and the Water Environment, HD45/09. Available at: <u>http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol11/section3/hd4509.pdf</u> (Accessed 8 November 2019)

more of the pollutant types, the next step is required based on increasing levels of inputs and assessment.

8.1.2.3 As well as assessing the risk of routine runoff from each drainage outfall in isolation, an incombination assessment is undertaken where more than one outfall discharges into the same reach of watercourse. This is the 'worst-case' scenario as the combined effects could be more significant. To aggregate the assessments, the total impermeable and permeable carriageway areas to be drained are added together, and the low flow of the watercourse is taken at the outfall location furthest downstream (this is the assessment point of the combined outfall assessment). For drainage outfalls positioned between 100m and 1km apart, the cumulative assessment is for soluble pollutants only, whilst for outfalls positioned closer together (within 100m), the combined assessment includes soluble and sediment pollutants. The two outfalls to the Swine Burn are approximately 100m apart and therefore both soluble and sediment pollutants have been considered in the combined assessment.

Accidental Spillage Risk Assessment (Method D)

- 8.1.2.4 Along a road there is a risk of vehicular collision that could result in the spillage of fuels, oils or chemicals, particularly if tankers and heavy goods vehicles (HGVs) are involved. A risk assessment of a serious spillage causing a pollution incident was undertaken using the methodology outlined in DMRB HD45/09.
- 8.1.2.5 The risk is calculated assuming that an accident involving spillage of pollutants onto the carriageway would occur at an assumed frequency (expressed as an annual probability), based on calculated traffic volumes and the type of road/junction. The annual probability of a serious accidental spillage also depends upon the emergency services response time, based on the location (i.e. urban, rural or remote location) and type of receiving water body (surface or groundwater).
- 8.1.2.6 Where spillage risk is calculated as less than 1% Annual Exceedance Probability (AEP) (less frequent than 1:100 years), the spillage falls within acceptable limits and no mitigation (i.e. sustainable drainage systems, SuDS) is required.
- 8.1.2.7 Using the same process as for the routine runoff assessment, a combined spillage risk assessment is undertaken where more than one outfall discharges into the same reach of watercourse. To aggregate the assessments, the total length of road drained (split into each road/junction type) is combined for all outfalls and the highest AADT and %HGV values are taken for each road/junction type.
- 8.1.2.8 Indicative pollution risk reduction factors associated with the SuDS systems proposed prior to each outfall is shown in Table TA6.1.1.

Table TA6.1.1: Indicative Pollutant Risk Reduction Factors (DMRB HD45/09)					
SuDS System	Risk Reduction Factor				
Filter Drain	0.6 (40%)				
Detention Basin	0.5 (50%)				
Combined SuDS	0.35 (65%) (40 + (50/2) = 65%) ²				

² After the first level of treatment, which will generally remove the majority of pollutant inputs in the 'first flush', subsequent SuDS components are assumed to have half the efficiency quoted. A factor of 0.5 is used to account for the reduced performance of secondary (or more) components associated with already reduced inflow concentrations

8.1.3 Assessment Inputs

8.1.3.1 The routine runoff and accidental spillage risk assessment parameters (and sources) for the two outfalls to the Swine Burn are provided in Table TA6.1.2 and Table TA6.1.3. The cumulative assessment inputs are provided in Table TA6.1.4.

Parameter	Value	Source			
Receiving Watercourse	Swine Burn				
Assessment (outfall) location	309634, 675880	Scheme drainage design			
AADT (vehicles/day) (range)	>10,000 and <50,000				
AADT (vehicles/day)	Slip roads: 7,100 Roundabout: 10,800 Side roads: 10,800	Scheme design year 2037 (Sweco traffic model)			
%HGV	Slip roads: 14.5 Roundabout: 14.5 Side roads: 10				
Climatic Region	Colder Dry				
Rainfall Site	Edinburgh (SAAR 676.2mm)	HAWRAT Help Manual v1.0 (2009)			
Low flow (Q95) (m ³ /s)	0.012	Wallingford HydroSolutions (WHS) software			
Baseflow Index (BFI)	0.398	Flood Estimation Handbook (FEH) website catchment descriptors			
Impermeable road area drained (ha)	1.412	Scheme drainage design			
Permeable area drained (ha)	0	Precautionary approach to assume 'zero'			
Length of road drainage to outfall (m)	Slip roads: 641 Roundabout: 138 Side roads: 271	Scheme drainage design			
Is the discharge in or within 1km upstream of a protected site for conservation?	No				
Is there a downstream structure, lake, pond or canal that reduces the velocity within 100m of the point of discharge?	No	Fishery pond and Humbie Reservoir downstream but not assumed to restrict flow/reduce velocity			
Hardness	Low (<50mg CaCO₃/I)	No site data, low hardness is worst- case (precautionary)			
Estimated river width at Q95 (m)	4	Channel cross-section data			
Existing treatment of solubles (%)	0				
Existing attenuation (l/s)	Unlimited	Assume no existing treatment or			
Existing settlement of sediments (%)	0	attenuation (worst-case)			
Proposed treatment of solubles (%)	65	2 levels of treatment – filter drains and detention basin (indicative			
Proposed attenuation (I/s)	6.6				

Table TA6.1.2: M9 Junction Eastbound Outfall						
Parameter	Value	Source				
Proposed settlement of		pollution mitigation indices from DMRB HD45/09).				
sediments (%)	65	Outflow from SuDS restricted to the Greenfield (1 in 2 year) runoff rate.				

Parameter	Value	Source		
Receiving Watercourse	Swine Burn			
Assessment (outfall) location	309530 675839	Scheme drainage design		
AADT (vehicles/day) (range)	>10,000 and <50,000			
AADT (vehicles/day)	Slip roads: 7,200 Roundabout: 16,300 Side roads: 18,200	Scheme design year 2037 (Sweco traffic model)		
%HGV	Slip roads: 14.5 Roundabout: 14.5 Side roads: 14.5			
Climatic Region	Colder Dry			
Rainfall Site	Edinburgh (SAAR 676.2mm)	HAWRAT Help Manual v1.0 (2009)		
Low flow (Q95) (m ³ /s)	0.012	Wallingford HydroSolutions (WHS) software		
Baseflow Index (BFI)	0.398	FEH catchment descriptors		
Impermeable road area drained (ha)	1.186	Scheme drainage design		
Permeable area drained (ha)	0	Precautionary approach to assume 'zero'		
Length of road drainage to outfall (m)	Slip roads: 809 Roundabout: 140 Side roads: 140	Scheme drainage design		
Is the discharge in or within 1km upstream of a protected site for conservation?	No			
Is there a downstream structure, lake, pond or canal that reduces the velocity within 100m of the point of discharge?	No	Fishery pond and Humbie Reservoir downstream but not assumed to restrict flow/reduce velocity		
Hardness	Low (<50mg CaCO ₃ /I)	No site data, low hardness is worst- case (precautionary)		
Estimated river width at Q95 (m)	4	Cross-section data for flood modelling		
Existing treatment of solubles (%)	0			
Existing attenuation (l/s)	Unlimited	Assume no existing treatment or		
Existing settlement of sediments (%)	0	attenuation (worst-case)		

Table TA6.1.3: M9 Junction Westbound Outfall							
Parameter	Value	Source					
Proposed treatment of solubles (%)	65	2 levels of treatment – filter drains and detention basin (indicative					
Proposed attenuation (I/s)	5.5	pollution mitigation indices from DMRB HD45/09).					
Proposed settlement of sediments (%)	65	Outflow from SuDS restricted to the Greenfield (1 in 2 year) runoff rate.					

Parameter	Value	Source			
Receiving Watercourse	Swine Burn				
Assessment (outfall) location	309634, 675880	Scheme drainage design			
AADT (vehicles/day) (range)	>10,000 and <50,000				
AADT (vehicles/day)	Slip roads: 7,200 Roundabout: 16,300 Side roads: 18,200	Scheme design year 2037 (Sweco traffic model)			
%HGV	Slip roads: 14.5 Roundabout: 14.5 Side roads: 14.5				
Climatic Region	Colder Dry				
Rainfall Site	Edinburgh (SAAR 676.2mm)	HAWRAT Help Manual v1.0 (2009)			
Low flow (Q95) (m ³ /s)	0.012	Wallingford HydroSolutions (WHS) software			
Baseflow Index (BFI)	0.398	FEH catchment descriptors			
Impermeable road area drained (ha)	(1.186+1.412) = 2.598	Scheme drainage design			
Permeable area drained (ha)	0	Precautionary approach to assume `zero'			
Length of road drainage to outfall (m)	Slip roads: 1,450 Roundabout: 278 Side roads: 411	Scheme drainage design			
Is the discharge in or within 1km upstream of a protected site for conservation?	No				
Is there a downstream structure, lake, pond or canal that reduces the velocity within 100m of the point of discharge?	No	Fishery pond and Humbie Reservoir downstream but not assumed to restrict flow/reduce velocity			
Hardness	Low (<50mg CaCO₃/l)	No site data, low hardness is worst- case (precautionary)			
Estimated river width at Q95 (m)	4	Cross-section data for flood modelling			
Existing treatment of solubles (%)	0	Assume no existing treatment or			
Existing attenuation (I/s)	Unlimited	attenuation (worst-case)			

Table TA6.1.4: M9 Junction In-Combination Outfall Assessment							
Parameter	Value	Source					
Existing settlement of sediments (%)	0						
Proposed treatment of solubles (%)	65	2 levels of treatment – filter drains and detention basin (indicative					
Proposed attenuation (I/s)	6.6	pollution mitigation indices from DMRB HD45/09).					
Proposed settlement of sediments (%)	65	Outflow from SuDS restricted to the Greenfield (1 in 2 year) runoff rate.					

8.1.4 Calculation Sheets (Outputs)

8.1.4.1 The routine runoff output tables and accidental spillage calculation sheets are provided in Table TA6.1.5 to TA6.1.10, and the results are summarised in Chapter 6: Road Drainage and Water Environment in Volume 2.

Table TA6.1.5: Routine Runoff Assessment – M9 Junction Eastbound Outfall

Summary of prediction ediction of impact Step1	ns <u>Soluble - Acute Impact</u> Copper Zinc		Copper	Zinc	Cadmium	<u>Sediment - C</u> Total PAH	Pyrene	Fluoranthene	Anthracene	Phenanthren
Step2 Step3										
ETAILED RESULTS	Step 1	Step 1								
	Copper Zinc RST24	Sub 1	Copper	Zinc	Cadmium	Total PAH Toxi	Pyrene city Threshold	Fluoranthene	Anthracene	Phenanthren
Allowable Exceedances/year No. of exceedances/year No. of exceedances/worst year	1 1 24.90 37.40 33 45		1 46.40 52	1 77.20 88	1 1.30 4	1 39.00 42	1 90.70 105	1 39.00 42	1 17.80 24	1 74.30 88
Allowable Exceedances/year No. of exceedances/year No. of exceedances/worst year	RST6 1 1 4.60 10.30 8 18									
Thresholds	(ug/l) (ug/l) RST24 21 60	Toxicity	(mg/kg) 197	(mg/kg) 315	(mg/kg) 3.5	(ug/kg) 16770	(ug/kg) 875	(ug/kg) 2355	(ug/kg) 245	(ug/kg) 515
Thresholds Event Statistics Mean	RST6 42 120 15.02 55.76		219	819	1	15606	2700	2591	165	730
90%ile 95%ile 99%ile	28.66 112.55 37.01 154.77 60.95 329.68		529 679 975	1987 2673 4718	1 2 4	28184 35481 89125	4876 6138 15419	4679 5890 14795	299 376 945	1319 1661 4171
In River (no mitigation)	Step 2 Copper Zinc	Step 2								
Allowable Exceedances/year No. of exceedances/year	RST24 2 2 0 0		Velocity	0.01	m/s	Tier 1	is used for the (alculation		
No. of exceedances/worst year No. of exceedances/summer No. of exceedances/worst summer	0 0 0 0 0 0		DI % settlement (50.45]	56				
Allowable Exceedances/year No. of exceedances/year	RST6 1 1 0 0									
No. of exceedances/worst year No. of exceedances/summer No. of exceedances/worst summer	0 0 0 0 0 0									
Annual average concentration (ug/l)	0.04 0.18									
Thresholds Thresholds	(up/l) (up/l) RST24 21 60 RST6 42 120									
Event Statistics Mean 90%ile 95%ile 99%ile	0.19 0.78 0.49 1.54 0.86 2.98 2.40 11.41									
In River (with mitigation)	Step 3									
Allowable Exceedances/year	Copper Zinc RST24 2 2									
No. of exceedances/year No. of exceedances/year No. of exceedances/worst year	0.00 0.00 0 0		-	17.00	_					
No. of exceedances/worst summer	0 0		DI	17.66						
Allowable Exceedances/year No. of exceedances/year	RST6 1 1 0.00 0.00									
No. of exceedances/worst year No. of exceedances/summer No. of exceedances/worst summer	0 0 0 0 0 0									
Annual average concentration (ug/l)	0.01 0.06 (up/) (up/i)									
Thresholds hresholds Thresholds	RST24 21 60 RST6 42 120									
Event Statistics Mean 90%ile 95%ile 99%ile	0.06 0.26 0.17 0.57 0.30 1.04 0.80 3.99									
Details of the chosen r										
SAAR (mm) Altitude (m)	676.2 57									
Easting Northing	3254 6733									
Coastal distance (km)	3.4									

Table TA6.1.6: Routine Runoff Assessment – M9 Junction Westbound Outfall

Table TA6.1.7: Routine Runoff Assessment – M9 Junction In-Combination Outfall Assessment

Table TA6.1.8: Spillage Risk Assessment – M9 Junction Eastbound Outfall

	AGENCY	View	Spillage Assessment	Parameters	Reset	Go To Runo	off Risk Assessm	ent Interface		
essm	ent of Priority Outfalls									
										
iod D -	assessment of risk from acci	idental spillage			for use if other roads					
114/-4-			A (main road)	В	С	D	E	F		
	r body type		Surface watercourse	Surface watercourse	Surface watercourse					
	th of road draining to outfall (m) Type (A-road or Motorway)		641 M	271 A	138 M					
	bad, is site urban or rural?		Rural	Rural	Rural					
	ion type		Slip road	Side road	Roundabout					
Locati			< 1 hour	< 1 hour	< 1 hour					
	c flow (AADT two way)		7,100	10,800	10.800					
% HG			14.5	10	14.5					
	ge factor (no/10 ⁹ HGVkm/year)		0.43	0.93	3.09					
Risk o	of accidental spillage		0.00010	0.00010	0.00024	0.00000	0.00000	0.00000		
	ability factor		0.60	0.60	0.60					
	of pollution incident		0.00006	0.00006	0.00015	0.00000	0.00000	0.00000		Return Perio
	greater than 0.01?	tion monouros	No	No	No 0.00015	0.00000	0.00000	0.00000	Totals	(years)
	n period without pollution reduct ng measures factor	tion measures	0.00006	0.00006	0.00015	0.00000	0.00000	0.00000	0.0003	3731
	ng measures factor n period with existing pollution re	eduction measures	0.00006	0.00006	0.00015	0.00000	0.00000	0.00000	0.0003	3731
	osed measures factor	ouron mousures	0.35	0.35	0.35	0.00000	0.00000	0.00000	0.0003	5751
	lual with proposed Pollution redu	uction measures	0.00002	0.00002	0.00005	0.00000	0.00000	0.00000	0.0001	10661
	ification for choice of existing ited existing treatment on M9 (a				stification for choice	of proposed measu filter drains and deten				
Limi	ited existing treatment on M9 (a									
Limi		issume none - prec	autionary approach)			Table 7.1	tion basin)	Optimum Risk Reduction Factor		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year)	Motorways	autionary approach) Rural Trunk	Urban Trunk		Table 7.1 Filter Drain	tion basin)	Reduction Factor 0.6		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year) No junction	issume none - prec	autionary approach)			Table 7.1 Filter Drain Grassed Ditch /	tion basin)	0.6 0.6		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year)	Motorways 0.36	Rural Trunk 0.29	Urban Trunk 0.31		Table 7.1 Filter Drain Grassed Ditch / Pond	tion basin)	0.6 0.6 0.5		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road	Motorways 0.36 0.43	Rural Trunk 0.29 0.83 3.09 0.88	Urban Trunk 0.31 0.36 5.35 1.46		Table 7.1 Filter Drain Grassed Ditch / Pond Wetland	tion basin) tem provide the second seco	0.6 0.6		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09 -	Rural Trunk 0.29 0.83 3.09 0.88 0.93	Urban Trunk 0.31 0.36 5.35 1.46 1.81		Table 7.1 Filter Drain Grassed Ditch / Pond	tion basin) tem provide the second seco	0.6 0.6 0.5 0.4		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road	Motorways 0.36 0.43 3.09	Rural Trunk 0.29 0.83 3.09 0.88	Urban Trunk 0.31 0.36 5.35 1.46		Table 7.1 Filter Drain Grassed Ditch / Pond Wetland Sediment Trap Unlined Ditch	tion basin) tem Swale tration basin	Reduction Factor 0.6 0.5 0.4 0.6		
Limi	Table D1 Serious Accidental Spillages (Billion HGV km/ year) No junction Slip road Roundabout Cross road Side road	Motorways 0.36 0.43 3.09 -	Rural Trunk 0.29 0.83 3.09 0.88 0.93	Urban Trunk 0.31 0.36 5.35 1.46 1.81		Table 7.1 Filter Drain Grassed Ditch / Pond Wetland Sodiaway / Infil Sediment Trap	tion basin) tem Swale tration basin	Reduction Factor 0.6 0.5 0.4 0.6 0.6		

Table TA6.1.9: Spillage Risk Assessment – M9 Junction Westbound Outfall

Â	HIGHWAYS Agency	Viev	w Spillage Assessment	Parameters	Reset	Go To Run	off Risk Assess	ment Interface		
sessm	ent of Priority Outfalls									
thed D	- assessment of risk from acci	dentel enillege		Additional column	s for use if other roads	drain to the same out	H-11			
thoa D	- assessment of risk from acci	dental spillage	A (main road)	Additional Column	C C	D	E	F	-	
1 Wate	r body type		Surface watercourse	Surface watercourse	e Surface watercourse				-	
	th of road draining to outfall (m)		809	140	140				-	
	Type (A-road or Motorway)		M	A	M					
	oad, is site urban or rural?		Rural	Rural	Rural					
	tion type		Slip road	Side road	Roundabout					
6 Locat			< 1 hour	< 1 hour	< 1 hour					
	c flow (AADT two way)		7,200	18,200	16,300					
8 % HC			14.5	14.5	14.5				_	
	ge factor (no/10 ⁹ HGVkm/year)		0.43	0.93	3.09	0.00000	0.00000	0.00000	_	
	of accidental spillage ability factor		0.00013	0.00013 0.60	0.00037	0.00000	0.00000	0.00000	_	
	of pollution incident		0.0008	0.00	0.00022	0.00000	0.00000	0.00000		Doturn Doried
	of pollution incident k greater than 0.01?			0.00008 No		0.00000	0.00000	0.00000	Totala	Return Period
	rn period without pollution reduct		No 0.00008	NO 0.00008	No 0.00022	0.00000	0.00000	0.00000	Totals 0.0004	(years) 2641
	ing measures factor	ion measures	1	1	1	0.00000	0.00000	0.0000	0.0004	2041
	ing measures factor in period with existing pollution re	eduction measure	as 0.00008	0.00008	0.00022	0.00000	0.00000	0.00000	0.0004	2641
	osed measures factor	succonmeasure	0.35	0.35	0.35	0.00000	0.00000	0.00000	0.0004	2041
	dual with proposed Pollution redu	ction measures	0.00003	0.00003	0.00008	0.00000	0.00000	0.00000	0.0001	7545
						Table 7.1			l	
	Table D1					Sys	tem	Optimum Risk Reduction Factor		
	Serious Accidental Spillages (Billion HGV km/ year)	Motorways	Rural Trunk	Urban Trunk						
	No junction	0.36	0.29	0.31		Filter Drain	Quela	0.6		
-	Slip road	0.43	0.83	0.31		Grassed Ditch / Pond	Swale	0.6 0.5		
ocation	Roundabout	3.09	3.09	5.35						
S S	Cross road	-	0.88	1.46		Wetland Soakaway / Infi	Itration basis	0.4 0.6		
13	Side road	-	0.93	1.81		Sediment Trap	uadon basin	0.6		
	Total	0.37	0.45	0.85		Unlined Ditch		0.0		
						Penstock / valv	e	0.7		
						Notched Weir		0.6		
						Oil Separator		0.5		
worksh	neet should be read in conjunctio	n with DMRB 11.	.3.10.							

Table TA6.1.10: S	Spillage Risk Assessment	– M9 Junction In-Combination C	Dutfall Assessment
-------------------	--------------------------	--------------------------------	---------------------------

Â	HIGHWAYS Agency	View	Spillage Assessment	Parameters	Reset	Go To Rund	off Risk Assessm	ent Interface		
Asses	sment of Priority Outfalls									
Method	D - assessment of risk from acci	dental enillage		Additional columns	s for use if other roads (drain to the same out	fall		_	
Method	D - assessment of fisk from acci	uentai spinage	A (main road)	B	C	D D	E	F		
D1 W	ater body type		Surface watercourse	Surface watercourse	-		_		_	
	ngth of road draining to outfall (m)		1,450	411	278					
	ad Type (A-road or Motorway)		M	Α	M					
	A road, is site urban or rural?		Rural	Rural	Rural					
	nction type		Slip road	Side road	Roundabout					
D6 Lo			< 1 hour	< 1 hour	< 1 hour					
	affic flow (AADT two way)		7,200	18,200	16,300				_	
D8 %			14.5	14.5	14.5				_	
	illage factor (no/10 ⁹ HGVkm/year)		0.43	0.93	3.09	0.00000	0.00000	0.00000	_	
	sk of accidental spillage obability factor		0.00024	0.00037 0.60	0.00074 0.60	0.00000	0.00000	0.00000	_	
	sk of pollution incident		0.00014	0.00022	0.00044	0.00000	0.00000	0.00000		Return Period
	risk greater than 0.01?		0.00014 No	0.00022 No	0.00044 No	0.00000	0.00000	0.0000	Totals	(years)
	turn period without pollution reduct	ion measures	0.00014	0.00022	0.00044	0.00000	0.00000	0.00000	0.0008	(years) 1237
	isting measures factor	ion measures	1	1	1	0.00000	0.00000	0.0000	0.0003	1231
	turn period with existing pollution re	eduction measures	0.00014	0.00022	0.00044	0.00000	0.00000	0.00000	0.0008	1237
	oposed measures factor		0.35	0.35	0.35	0.00000	0.00000	0.00000	0.0000	1207
D17 Re	sidual with proposed Pollution redu	ction measures	0.00005	0.00008		0.00000	0.00000	0.00000	0.0003	3536
						Table 7.1				
	Table D1 Serious Accidental Spillages (Billion HGV km/ year)	Motorways	Rural Trunk	Urban Trunk		Syst	em F	Optimum Risk Reduction Factor		
	No junction	0.36	0.29	0.31		Filter Drain Grassed Ditch /	Swale	0.6 0.6		
		0.43	0.83	0.36		Pond	Swale	0.5		
	Slip road Roundabout Cross road Side road	3.09	3.09	5.35		Wetland		0.4		
	Cross road	-	0.88	1.46		Soakaway / Infil	tration basin	0.6		
	Jide Toda	-	0.93	1.81		Sediment Trap		0.6		
L	Total	0.37	0.45	0.85		Unlined Ditch		0.7		
						Penstock / valve Notched Weir Oil Separator	•	0.4 0.6 0.5		
The wor	ksheet should be read in conjunctio	n with DMRB 11.3.	10.							